
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2008

Structural and electronic investigations of complex
intermetallic compounds
Hyunjin Ko
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Inorganic Chemistry Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Ko, Hyunjin, "Structural and electronic investigations of complex intermetallic compounds" (2008). Retrospective Theses and
Dissertations. 15703.
https://lib.dr.iastate.edu/rtd/15703

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F15703&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F15703&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F15703&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F15703&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F15703&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F15703&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/137?utm_source=lib.dr.iastate.edu%2Frtd%2F15703&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/15703?utm_source=lib.dr.iastate.edu%2Frtd%2F15703&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

Structural and electronic investigations of complex intermetallic compounds 

by

Hyunjin Ko

A dissertation submitted to the graduate faculty 

in partial fulfillment of the requirements for the degree of 

DOCTOR OF PHILOSOPHY 

Major:  Inorganic Chemistry  

Program of Study Committee: 
Gordon J. Miller, Major Professor 

John D. Corbett 
Mark Gordon 
L. Keith Woo 

Vitalij Pecharsky 

Iowa State University 

Ames, Iowa 

2008 

Copyright © Hyunjin Ko, 2008.  All rights reserved.



www.manaraa.com

3316228 
 

3316228 
 2008

Copyright 2008 by
    Ko, Hyunjin
 
All rights reserved 



www.manaraa.com

ii

… to my mother, 



www.manaraa.com

iii

Table of Contents 

CHAPTER 1: General Introduction      1 

  Introduction       1 

  Dissertation Organization     12 

  References       14 

CHAPTER 2: Synthesis and Methods      17 

  Synthesis       17 

  Characterization Techniques and Analysis   20 

  Physical Property Measurements     23 

  Theory and Electronic Structure Calculations   24 

  References       27 

CHAPTER 3: Rhombohedrally Distorted –Brasses CrxFe1 xGa:  29 

Crystallographic, Magnetic and Electronic Structure 

Relationships

Abstract       29 

Introduction       30 

Experimental Section      31 

Results and Discussion      35 

Conclusions       59 

References       64 

Supplement Tables and Figures     68 



www.manaraa.com

iv 

CHAPTER 4: Between Hume-Rothery and Polar Intermetallics:   77 

Ti0.86(2)Ni1.95(2)Ga1.2: A New G-Phase

Abstract       77 

Introduction       77 

Experimental        79 

Results and Discussion      83 

Conclusions       94 

References       95 

CHAPTER 5: Single Crystal X-Ray Diffraction Studies on Ternary RENiGe3

Series (RE = Ce-Nd, Sm, Gd-Lu; Y)         97 

Abstract            97 

Introduction            98 

Experimental             99 

Results and Discussion           104 

Conclusions            117 

References            119 

Supplement Tables           122 

CHAPTER 6: Magnetic Structures of MM’As Series (M, M’ = Cr, Mn, Fe):  

a Theoretical Investigation          131 

Abstract            131 

Introduction            131 

Methods            141 

Results and Discussion           143 



www.manaraa.com

v

Conclusions            152 

References            154 

Supplement Figures           156 

CHAPTER 7: General Conclusions           157 

Appendix 3.1: Single Crystal Structure of Cr3Ga         159

Appendix 4.1: Crystal Structures of V0.6(Co1-xGax)2.67 series        162 

  and Nb2.3(1)RhGa1.4(1)

Appendix 4.2: Crystal Structure of Ti0.48(1)NiGa2         169 

Appendix 4.3: Single Crystal Structure of NbGa3         172 

Appendix 5.1: Anisotropic Physical Properties of RNixGe3 Series       175 

(R = Y, Ce-Nd, Sm, Gd-Lu) 

Appendix 5.2: Single Crystal Structure of ErNi1.53(1)Ge2        177 

Appendix 6.1: Single Crystal Structure of CeA2Ge2 (A = Au, Ag)       180

Appendix 6.2: Single Crystal Structure of RhZr2         183 

Appendix 6.3: Single Crystal X-Ray Diffraction Studies on Ternary REFe2Zn20

Compounds (RE = Gd, Tb)          186 

Acknowledgements             206 



www.manaraa.com

CHAPTER 1 

General Introduction 

 

 

In solid state chemistry, numerous investigations have been attempted to 

address the relationships between chemical structure and physical properties.  Such 

questions include: (1) How can we understand the driving forces of the atomic 

arrangements in complex solids that exhibit interesting chemical and physical 

properties?  (2) How do different elements distribute themselves in a solid-state 

structure?  (3) Can we develop a chemical understanding to predict the effects of 

valence electron concentration on the structures and magnetic ordering of systems by 

both experimental and theoretical means?  Although these issues are relevant to 

various compound classes, intermetallic compounds are especially interesting and 

well suited for a joint experimental and theoretical effort.  For intermetallic 

compounds, the questions listed above are difficult to answer since many of the 

constituent atoms simply do not crystallize in the same manner as in their separate, 

elemental structures.  Also, theoretical studies suggest that the energy differences 

between various structural alternatives are small.  For example, Al and Ga both 

belong in the same group on the Periodic Table of Elements and share many similar 

chemical properties.  Al crystallizes in the fcc lattice with 4 atoms per unit cell39 and 

Ga crystallizes in an orthorhombic unit cell lattice with 8 atoms per unit cell,24 which 

are both fairly simple structures (Figure 1).  However, when combined with Mn, 

which itself has a very complex cubic crystal structure with 58 atoms per unit cell,26 

the resulting intermetallic compounds crystallize in a completely different fashion.  

1
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At the 1:1 stoichiometry, MnAl forms a very simple tetragonal lattice with two atoms 

per primitive unit cell,40  while MnGa crystallizes in a complicated rhombohedral 

unit cell with 26 atoms within the primitive unit cell.26(b) 

 

Figure 1.  Unit cell structures of a) fcc Al, b) tetragonal MnAl, c) cubic -Mn, d) 

rhombohedral MnGa, e) orthorhombic Ga.24  Open circles, black filled circles, and 

gray filled circles represent Al, Mn and Ga respectively. 
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The mechanisms influencing the arrangements of atoms in numerous crystal 

structures have been studied theoretically by calculating electronic structures of these 

and related materials.  Such calculations allow us to examine various interactions at 

the atomic scale, interactions which include orbital overlap, two-electron interactions, 

and Madelung terms.  Moreover, these electronic studies also provide links between 

the angstrom-scale atomic interactions and the macro-scale physical properties, such 

as magnetism. 

 Over the past few decades, there have been many significant developments 

toward understanding structure-bonding-property relationships in extended solids in 

terms of variables including atomic size, valence electron concentration, and 

electronegativity.  However, many simple approaches based on electron counting, 

e.g., the octet rule, the 18-electron rule, or Wade’s rules43-46 for boranes, cannot be 

2
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applied adequately or universally to many of the more complex intermetallic 

compounds. 

 

Table 1.   Summary of Hume-Rothery electron phase types with 1.0 < vec < 2.0.2 

Phase Type Structure Pearson symbol c/a range vec range 

 f.c.c. cF4  1.00 – 1.42 

 b.c.c cI2  1.36 – 1.59 

 Cubic cI52  1.40 – 1.54 

 b.c.c. cI52  1.54 – 1.70 

 Cubic cI52  1.55 – 2.00 

 h.c.p. hP2 1.633 1.32 – 1.83 

 h.c.p. hP2 1.55 – 1.58 1.65 – 1.89 

 h.c.p. hP2 1.77 – 1.88 1.93 – 2.0 

 

For intermetallic phases that include late transition metals and post transition 

main group elements as their constituents, one classification scheme has been 

developed and effectively applied by using their valence electron count per atom (vec).  

These compounds are known as Hume-Rothery electron phases,1 and they have a 

variety of structure types with vec < 2.0 as shown in Table 1.

Hume-Rothery Phases 

Empirical studies of many alloy systems have shown that one of the most 

important factors determining the stability of intermediate phases is the valence 

electron concentration (vec).  An empirical rule describing the electron concentration 

3
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scaled phase stabilization in metals is well known as the Hume-Rothery rule, and the 

alloys stabilized at specific electron concentrations have been referred to as Hume-

Rothery phases.32-34  Many theoretical studies suggest that the formation of a 

“pseudogap” at the Fermi level (EF) in the electronic density of states (DOS) curves 

must be responsible for this electron concentration scaled, phase stabilization 

mechanism, because the total kinetic energy of valence electrons would be reduced 

when EF falls in a pseudogap.  A “pseudogap” is a deep, nonzero relative minimum 

in the DOS curve between two regions of higher DOS value.  For example, in Figure 

2, the Fermi level is located at a pseudogap in the DOS shown in contrast to a gap in 

the lower energy region. 

 

Figure 2.  An example of a pseudogap in a DOS curve. 
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In other words, therefore, the Hume-Rothery phases are electronically 

stabilized structures by having the Fermi level located in a pseudogap of the density 

4
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of states curve and, thereby, lowering the kinetic energy of the valence electrons.  

Therefore, the factors leading to formation of a pseudogap at EF should be 

investigated in order to fully understand the Hume-Rothery stabilization mechanism.  

A pseudogap is believed to form at EF when the Fermi sphere with a diameter 2kF 

makes simultaneous contacts with a number of equivalent Brillouin zone planes 

associated with the reciprocal lattice vector Khkl.  Hence, the 2kF =Khkl condition 

must be directly related to the formation of the pseudogap at EF.  The formation 

range for phases obtained by alloying noble metals with polyvalent post transition 

elements is known to be universally scaled by the valence electron per atom ratio e/a.  

This e/a scaled phase stability of the noble metal based, Hume-Rothery alloys has 

been discussed in terms of the Fermi surface-Brillouin zone (FS-BZ) interaction.3, 4 

Hume-Rothery Phases to Quasicrystal Phases 

Quasicrystals, discovered by Shechtman et al.5 in 1984, are a class of 

intermetallic compounds gaining importance for their electronic, magnetic and 

mechanical properties.  They have now been recognized as a new class of Hume-

Rothery alloys, since Tsai et al.6 and Yokoyama et al.7 discovered a series of 

thermally stable Al-Cu-TM (TM = Fe, Ru, Os) and Al-Pd-TM (TM = Mn, Re) 

quasicrystals at a specific e/a of about 1.75.  Quasicrystals are a novel class of 

intermetallic solids that have rotational symmetries in their diffraction patterns that 

are incommensurate with translational periodicity, such as 8-fold, 10-fold, or 12-fold 

rotations.  Many quasicrystalline phases are known to have thermodynamically 

stable, long-range ordered building blocks such as icosahedra and dodecahedra.   

Since the structures and atomic distribution in quasicrystals are difficult to 

solve, periodic approximants are studied, like the icosahedral phase.  Such phases 

5
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are translationally normal crystalline compounds of a quasicrystal phase.35  

Quasicrystal approximants have unit cells that are believed to be identical to a 

fragment of the associated quasicrystalline phase, and their compositions lie very 

closely to the quasicrystalline phase.  Crystalline approximants are of significant 

interest because they allow us to gain a clearer understanding of the structural 

properties of quasicrystals through precise determination of their atomic structures.  

They are generally recognized as electron phases that may be described by Hume-

Rothery stabilization rules, with restricted ranges of vec and with pseudogaps at or 

near their EF.  The stability of approximants and quasicrystals are explained in terms 

of their local atomic structures and the resulting electronic densities of states.36 

Fujiwara made the first ab initio band calculations for an approximant to the 

Al-Mn quasicrystal and revealed the presence of a pseudogap at EF. He suggested 

that the location of EF in the pseudogap most likely stabilizes such complex 

compounds.8  The presence of a pseudogap at EF has been observed in band 

calculations for other approximants, and, therefore, identified as one determining 

factor of quasicrystals and their approximants.  However, this discussion has not 

been extended to whether the Brillouin zone planes involved in the 2kF =Khkl 

condition, are indeed, responsible for producing the pseudogap at EF.37 

Due to the icosahedral or dodecagonal symmetry mentioned above for 

quasicrystals, many approximants are based on concentric shells of icosahedral and 

dodecagonal cages of atoms.3  The geometrical features of these polyhedra often 

lead to crystalline approximants with body-centered cubic unit cells.  Icosahedral 

quasicrystals and their approximants are classified into two families depending on the 

cluster unit building up its structure: one is described by the rhombic triacontahedron 

containing 44 atoms; and the other by the Mackay icosahedron containing 54 atoms.  

6
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 - Brass Phases 

One important crystalline structure that occurs for elements that also form 

quasicrystals is the cubic -brass structure, which crystallizes in the Laue class m34  

(point symmetry = Td) with 52 atoms in the cubic unit cell.9  One description of the 

structure involves four fused atom-centered icosahedra,10,11 which is emphasized in 

Figure 3.  From an historical perspective, -brasses are considered to be Hume-

Rothery electron phases because their structures are controlled to a large extent by the 

concentration of valence electrons.1  Seminal examples include Cu5Zn8, Cu9Al4 and 

Pd2Zn11, which demonstrate the range of compositions as well as the narrowness of 

vec values (all three examples have vec values in the range 1.6-1.7 valence s and p 

electrons per atom).12  Recent investigations into changing chemical compositions in 

the Pd-Zn and Pt-Zn systems show fascinating superstructures along [110] directions 

involving chains of fused icosahedra,13 as well as the constancy of a [Cu4Zn4] kernel 

in Cu-Zn phases.38   

 

Figure 3.  Cubic, -brass unit cell structure. The black filled circles, large open 

circles, and small gray filled circles represent Cr, Cr/Al, and Al, respectively.10 

 

7
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Other examples of cubic -brass structures that represent challenges to electron 

counting include Cr5Al8 and Mn1+xGa1 x, due to their partially filled 3d bands. 

The relationship of crystal structure according to its vec in the -brass phases 

emphasizes the role of electronic structure in influencing atomic arrangements.  In 

fact, the same is true of most quasicrystals.  Ever since Fujiwara’s first band 

structure calculations on the approximants of Al-Mn quasicrystals revealed the 

existence of a pseudogap at the Fermi level (EF),9 numerous empirical and ab initio 

studies have shown that the stability of various quasicrystalline phases and their 

approximants arise from a similar outcome.  Thus, many quasicrystals and their 

approximants are “electron phases,” because the total energy of valence electrons is 

reduced when EF falls in a pseudogap, which is known as the Hume-Rothery 

stabilization rule. 

 

Heusler Phases (Colorings of BCC) 

Heusler alloys belong to a class of ternary intermetallics with the 

stoichiometric composition X2YZ (X, Y = transition metal; Z = main group element), 

of which the most important contain copper, manganese, and aluminum.  These 

alloys crystallize in the cubic Cu2MnAl-type structure (space group Fm 3 m).  Of 

these, many are ferromagnetic or half-metallic, and have attracted particular interest 

due to their unique transport, electronic, thermoelastic and magnetic properties, which 

markedly depend on the X component.14   

The face-centered cubic (fcc) Heusler phases can be viewed as four 

interpenetrating fcc lattices, each of which originate, respectively, at (000), 

(1/4,1/4,1/4), (1/2,1/2,1/2) and (3/4,3/4,3/4) of the cubic unit cell.  Of these, two are 

equally occupied by the X element (1/4,1/4,1/4) and (3/4,3/4,3/4) and the resulting 

8
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structure is a different coloring of the body-centered cubic (bcc) lattice that either the 

CsCl-type or the NaTl-type structure, which is the Zintl phase, based solely on the 

atomic distribution in the unit cell.15 

One of the most thoroughly studied prototypes of the Heusler alloys is the 

ferromagnetic and thermoelastic Ni2MnGa (Figure 4), which is best known as the 

shape-memory alloy used in magnetic actuators.17  Ni2MnGa undergoes a 

martensitic transition from a high-temperature, cubic Heusler-type structure to a 

corresponding tetragonal structure with a 6.6% c-axis contraction at 200 K.  The 

magnetic field-induced strain observed in Ni2MnGa differs from common 

magnetostriction involving distortion of the crystal lattice.18-19   

 

Figure 4.  The fcc Heusler structure of Ni2MnGa. The small circles, large open 

circles, and large filled circles represent Ni, Mn, and Ga, respectively.16 

 

 

During investigations of structure-property relationships in these Heusler 

alloys, scientists have realized that the magnetic properties and, particularly, the 

magnetic transition temperature of Ni-Mn-Ga41 alloys (and substitution for Ga with 

other elements) are very sensitive to fluctuations in composition.  For example, by 

9
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changing the composition slightly from the 2-1-1 stoichiometry, differences in 

magnetic entropy of up to 15 J/kgK at the corresponding transition temperatures can 

be achieved.18, 20-21,42  The idea of vec could also be applied to understand the nature 

of the lattice transformation in Ni2MnGa, which is caused by a Jahn-Teller effect.22  

Thus, the electronic structure plays an important role in determining the magnetic 

properties of Heusler compounds.  Two typical features in the DOS for the large 

group of Heusler alloys include (1) an energy gap between valence s states and mixed 

p-d states; and (2) their electrical behaviors structure that range from metallic to 

semimetallic to semiconducting behavior. 

 

Research Motivations 

In terms of molecular orbital theory, Nature often finds interatomic 

interactions to be optimized at particular distances by completely filling bonding 

states and leaving antibonding states empty.31  In complex solid-state structures with 

numerous interatomic contacts, many competing interactions make it difficult to 

optimize all bonds.  If this optimization cannot be established for a given structure 

and chemical composition, the structural instabilities (i.e., those showing antibonding 

interactions at the Fermi level) could be removed by a variety of chemical, structural, 

and electronic modifications, all of which affect the orbital interactions and the 

associated electronic density of states.  These modifications include structural 

distortions, creation of vacancies or mixed site occupancies, and spin polarization, 

among others.  Moreover, the complexity of crystal orbitals and their dependence on 

k-points adds further challenges in interpreting the electronic structure from an 

atomistic perspective.  Crystal orbital Hamilton Population (COHP) analysis is a 

powerful yet simple tool that is widely used among theoretical solid-state chemists.  

10
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For a particular interatomic interaction, the DOS is weighted by the corresponding 

Hamiltonian matrix element to generate a COHP curve within the theoretical 

framework of density functional theory.  The sum of Kohn-Sham eigenvalues ( i), 

the band energy, can be partitioned into interatomic (j = k) and interatomic (j  k) 

contributors according to 

i j k
jki

F

EdECOHP )(  

There have been many studies devoted to gain insights about structure-

composition-property relationships in complex solids.  While experimental results 

have demonstrated that the properties of materials can be tuned and enhanced based 

on their structural modifications and chemical composition changes, a clear 

mechanistic understanding of the relationship between the three has not yet emerged.  

Perhaps the greatest challenge to the development of this link is lack of intermediate 

phases, which can combine simple and complex structures with different properties.   

 

Figure 5.  A classification triangle for intermetallics. 
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In Figure 5, previously discussed intermetallic phases are located on each 

vertex of the phase triangle.  The sides of this triangle represent characteristics that 

link different types of phases.  For instance, the fcc Heusler phase can be viewed as a 

different coloring of the bcc NaTl-type Zintl phase.  If all atoms in these two unit 

cells would be colored with the same atom, they would look identical.  However, if 

this Heusler phase goes through a structural change by either a lattice distortion or by 

creating vacancies, then the cubic -brass (Hume-Rothery) phase can be constructed 

via formation of some intermediate bridging phase. 

One theme that establishes the connecting link in the triangle in Figure 4 can 

be seen by a COHP analysis.  When the Fermi level for a given chemical structure is 

located among antibonding states, Nature often adopts a new electronic structure to 

move the Fermi level away from these states by: (1) shifting the majority spin states 

to lower energy and minority spin states to higher energy to create itinerant magnetic 

order; (2) distorting the lattice structure to specifically eliminate the antibonding 

interactions; or (3) changing chemical composition by allowing shared site 

occupancies and/or by creating vacancies which modify the valence electron count or 

eliminate antibonding interaction.  In this dissertation, we attempt to explore these 

electronic responses for various examples representing different parts of the triangle. 

Chapter 2 describes general experimental and theoretical methods used 

throughout the dissertation. 

Chapter 3 discusses syntheses and structural characterization of the CrxFe1-xGa 

series.  These 3d transition metal gallide phases adopt rhombohedrally distorted -

brass structures, and the local spin states of the magnetically active 3d elements, Cr 

12
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and Fe, are oriented in complex one-dimensional icosahedra chain with intrinsic 

magnetically frustrated environments.  

Chapter 4 provides an introduction to the intermetallic phase that bridges the 

Heusler phase and the -brass structure; an observation that for the first time, begin to 

establish relationships between these diverse compound classes.  

Ti0.80(2)Ni1.83(2)Ga1.12 adopts a structure with a different coloring of the defect-bcc 

network related to the fcc “TiNi2Ga” Heusler phase, but with ordered vacancies.  

This structure is directly related to the -brass structure sharing its 26-atom cluster 

building block, and the existence of a pseudogap at the Fermi level by optimizing 

short interatomic contacts (COHP analysis) also provides a similar electronic picture 

as the -brass phases. 

Chapter 5 focuses on the interplays between electronic structure, 

crystallographic structure, and chemical composition as part of a study of new rare-

earth intermetallics.  Large single crystals of the RENi1 xGe3 family (RE = Ce-Nd, 

Sm, Gd-Er, Y) were grown in a Ge flux for physical property measurements.  Here, 

the competition to obtain energetic stability occurs between the compound’s lattice 

energy and Ni concentration, which affects the total valence electron count.  Studies 

of crystal structures and COHP analyses indicate that a decreasing Ni content is 

needed to maintain electronic stability.  YbNiGe3 and LuNiGe3 crystallize in new 

structure types.  

Chapter 6 summarizes theoretical investigations on Cu2Sb-type MM As (M, M  

= Cr, Mn, Fe).  This study focuses on the spin orientations of 3d metals in tetrahedral 

and square pyramidal environments for various valence electron counts.  From the 

computational results, two spin sublattices are distorted especially in the vicinity of 

13
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the Fermi level, and the tetrahedral site has the larger effect in structure stabilization 

with a majority of the states located around the Fermi energy. 
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CHAPTER 2 

Experimental Methods 

Synthesis

 The search for new materials with desired physical properties begins with 

synthetic challenges that emphasize the significance of selecting the optimum 

preparation method which must be based on knowledge of material handling, 

pretreatment, and homogenizing methods with benefits and limitations of each 

technique and its subsequent influences on the research objectives. 

 

Starting Materials 

 High purity elements are used as starting materials designed to prepare 0.5 g 

of a hypothetical target phase in all the reactions performed.  A list of these elements 

is given in Table 1. 

Most of the elements are used as received from the manufacturer, but an extra 

preparatory step is applied to a few cases when necessary.  For highly sensitive 

reactants, surface impurities such as metal oxides are either etched using appropriate 

acidic solution1 or mechanically filed after the oxide impurities are diffused to the 

surface by arc-melting, then rinsed with water, dried, and given a final rinse again 

with acetone. 
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Table 1.  Reactant Elements Used for Material Preparations. 

Element Source Purity Form 

RE Ames Lab. > 99.99 % Chunks, ~ 2 g 

Co Ames Lab. 99.995% Pieces, < 0.5 g 

Cr Alfa Aesar 99.99% Pieces, 3-8 mm 

Fe Alfa Aesar 99.97+% Pieces, 12 mm 

Ga Alfa Aesar 99.9999% Ingots, ~ 2.5 g 

Mn Alfa Aesar 99.99% Pieces, < 0.5 g 

Nb Ames Lab. 99.8% Rod, ~ 10 g 

Ni Ames Lab. 99.98% Wire, 1.0 mm 

Pt Ames Lab. 99.99% Pieces, < 0.3 g 

Rh Ames Lab. 99.95% Pieces, < 0.1 g 

Sn Ames Lab. 99.999% Pieces, < 0.5 g 

Ti Ames Lab. 99.95% Foil, < 0.75 mm 

V Ames Lab. 99.7% Foil, < 0.5 mm 

Zn Ames Lab. 99.996% Chunks, ~ 2 g 

 

Reaction Containers 

 One of the important aspects of solid-state synthesis is selection of a proper 

material for a reaction container.  For most cases, a silica tube is used as the reaction 

vessel if the elements don’t attack the container.  Whenever required, other reaction 

vessels are considered, e.g. alumina crucibles where Ga metal is used as a flux 

material.  The silica tube is first rinsed with distilled water, then the residual water is 

dried off with acetone followed by oven-baking at 393 K for ca. 2-3 hrs.  After the 

initial cleaning, the tubes are treated with a gas/oxygen torch flame under dynamic 
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vacuum (p < 6105 torr) to eliminate residual hydroxides from the inner wall of the 

tube, and, finally, are sealed off. 

 

Arc Melting 

For high reaction temperatures, initial melting of stoichiometric quantities of 

high purity reactant elements is accomplished in an arc-melting furnace1.  Typically, 

the weighed elements are placed on a water-cooled copper hearth under an argon 

atmosphere at a slightly greater pressure than the atmospheric pressure.  A sharp, 

thoriated tungsten electrode is used to create an arc between the electrode and the 

copper hearth to achieve temperatures ca. 3273 K.   

This technique provides an advantage by overcoming kinetic barriers in solid 

state reactions, and also shortens the reaction time relative to the ones done in a tube 

furnace.  On the other hand, the continuously water-cooled copper hearth brings a 

disadvantage of creating temperature gradients between the top and bottom of the 

sample resulting in compositional variations throughout the sample.  By turning over 

the sample and repeating the arc-melting process several times, a homogeneous 

sample can be achieved.  Another problem occurs when using elements with high 

vapor pressures or with very different densities.  To overcome the inevitable mass 

loss of these reactants, a slight excess (usually 0.5 - 1.0 wt. %) of the particular 

element is loaded. 

 

Furnaces

 Most reactions are carried out in a tube furnace which can achieve 

temperatures up to 1473 K.  The reaction temperature profile is controlled by a 

programmable temperature controller equipped with a J-type thermocouple.  The 
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reactants are melted and typically allowed to homogenize at 1273-1323 K for 24-48 

hours.  Then, the crystals are encouraged to nucleate and grow by slow cooling to 

the target annealing temperature at a rate of 1 K/min.  This procedure usually yields 

single crystals suitable for subsequent X-ray diffraction experiments. 

 

Visual Inspection 

 Initial product characterization is performed by visual inspection of the 

samples.  From the colors and possible morphologies of the products, qualitative 

analysis of product yield is estimated as well as the possibility of side-reaction 

products with impurities, e.g., reactions with the reaction container.  Also, the 

brittleness, crystal shapes, and crystallinity are examined. 

Characterization

Powder X-ray Diffraction Analysis 

 The primary method of product characterization is Guinier X-ray powder 

diffraction using a Huber 670 image plate camera.  The samples are ground and 

evenly dispersed on a Mylar film aided by using petroleum jelly in hexane.  The 

incident X-ray radiation is Cu K 1 (  = 1.540598Å ) and the 2  values range from 4 

to 100  at 0.005  increments.  A typical data collection is obtained by scanning the 

image plate 10 times after an exposure time of 1 hour at room temperature.   

The lattice parameters of the sample are indexed by a least squares fit of the 

2  values for the diffraction intensities, and the phase purity is also estimated for 

crystalline phases present in the sample.9-10  From these indexed intensities, the 

structure type is compared with the simulated patterns from known crystal structures 

generated by the program PowderCell2.  If an unknown structure is recognized, the 
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reflections are manually indexed and compared against the results from single crystal 

X-ray diffraction experiments.  For accurate lattice constants as well as the crystal 

symmetry, it is critical to obtain high quality powder patterns. 

 

Single Crystal X-Ray Diffraction Analysis 

Additional information about the crystal structure is obtained by single crystal 

X-ray diffraction.  Suitable crystals, usually with well-defined facets and reflective 

surfaces, are selected and mounted on silica fibers, then transferred to one of two 

single crystal X-ray diffractometers, either the Bruker SMART APEX CCD or the 

STOE-IPDS.  Each diffractometer uses monochromated Mo K  radiation (  = 

0.71073 Å ).  The initial determination of the lattice type and parameters is 

completed using a random search subroutine by collecting twenty-five reflections.  

From the information on possible lattice types obtained by indexing and refining 

reflections and determining the orientation matrix, measurement parameters such as 

data collection ranges and exposure times are optimized using software packages 

accompanying the diffractometer controller.   

A typical data collection on the Bruker CCD is completed in a hemisphere or 

full-sphere of reciprocal space with 0.3  scans in  for 10 sec/frame.  Data 

processing includes Lorentz polarization correction and an empirical absorption 

correction using the SAINT3 and SADABS4 program suites and including correction 

factors for a cylindrical, plate-like, or spherical crystal shape as necessary5.  Then, 

the absorption corrected data are averaged in the corresponding space group to 

generate a reduced data set for use in subsequent structure refinements.   

Data collected on the STOE image plate is processed by a numerical 

absorption correction using the X-shape and X-red software packages6.  Then, the 
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averaged and merged data sets are used in structure determinations and refinements.   

The structure refinements are carried out with the SHELXTL7 program suite 

by full-matrix, least-squares refinements on F2 using reflections with I > 2 (I).  

Atomic positional parameters, site occupancies, isotropic (Ueq) and anisotropic (Uij) 

thermal displacement parameters, and the extinction coefficients (g) are refined for a 

complete structure solution.  For an isotropic model, the atomic displacement 

parameters (B or Ueq) are related by the scattering factor for a stationary atom f( ) and 

for the vibrating atom f ( ).  
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The solution of the crystal structure refinement is evaluated and reported with 

the corresponding statistical terms, which include the final residual electron densities 
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Chemical Analysis 

 Elemental analyses by energy dispersive X-ray spectroscopy are performed 

on a JEOL 840A scanning electron microscope in collaboration with Dr. Warren 

Straszheim in the Materials Science and Engineering Department.  The instrument is 

equipped with an IXRF Systems Iridium X-ray analyzer with Kevex Quantum thin-

window Si(Li) detector.  Typical data collections utilize a 20 kV accelerating voltage 

and a 30 mA beam current.  For accurate path length calculations of the back-

scattered electrons, the samples are prepared by polishing the surfaces to flatness 

within a microscale.  The standardless method is used with elemental references as 

internal standards. 

 

Magnetic Susceptibility Measurements 

 Magnetic susceptibility measurements are obtained using a Quantum Design 

MPMS-5 SQUID magnetometer in collaboration with Dr. Sergey L. Bud’ko and Prof. 

Paul Canfield in the Department of Physics and Astronomy.  A typical set of 

magnetic susceptibility ( ) data are measured from 1.7 to 300 K on ca. 20 mg of 

polycrystalline samples in applied magnetic fields of 1 kOe and 10 kOe with a 7 T 

superconducting magnet.  The collected data are assessed with the magnetic property 
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measurement system (MPMS-511) software unless otherwise indicated.   

 Effective magnetic moments ( eff) and Weiss temperatures ( w) are 

calculated for samples in temperature ranges where paramagnetic Curie-Weiss 

behavior is observed, which is common for temperatures exceeding 100 K.  The 

susceptibility obtained from linear regression of 1/  versus T plots is given by: 
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Electronic Structure Calculations 

Tight-Binding Approximation 

The tight-binding12 method of modeling the electronic structure of materials 

is one of the most widely used computational techniques.  This approach works by 

replacing the many-body Hamiltonian operator with a parameterized Hamiltonian 

matrix and by solving the Schrödinger equation using an atomic-like basis set.  The 

atomic-like set has the same symmetry properties as the atomic orbitals.  The tight-

binding approach has been demonstrated to work very well for covalently bonded 

systems such as C, Si, Ga, Ge, In, etc and d-band transition metals. 

Extended Hückel Method 

Electronic structure calculations with the Extended Hückel approach are 

performed using the tight-binding approximation, and the energy density of states 

(DOS) and crystal orbital overlap population curves (COOP) are calculated using 

special sets of k points13.  The calculations include overlaps out to two neighboring 
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unit cells along every translation vector.  A Mulliken population analysis is 

particularly useful to give insights on the site preferences in the crystal structures. 

 The total DOS of a system is defined as: 

n
nEEEg )()(  

where the sum runs over all energy states En of the system.  The DOS is just the 

number of energy levels between E and E+dE divided by the infinitesimal energy 

interval dE.  For crystals with perfectly periodic atomic arrangements: 

  
k

kEEEg ))(()( . 

The sum runs over all possible values of the wave vector k, but in actual calculations 

we restrict k to the first Brillouin zone14.  The DOS concept is extremely useful in 

electronic structure calculations, especially given that the DOS is an experimentally 

measurable quantity by a variety of techniques such as scanning tunneling microscopy. 

From the calculated DOS, the Fermi energy is obtained by filling up the lowest energy 

states each with two electrons until the total number of electrons is achieved. 

 

Linear Muffin-Tin Orbital (LMTO) Method 

 More extensive theoretical studies of electronic structure are carried out by 

self-consistent calculations within density functional theory by using the tight-binding, 

linear muffin-tin-orbital (TB-LMTO) method15-18 within the atomic sphere 

approximation (ASA) using the Stuttgart code19.  Exchange and correlation are 

treated in a local spin density approximation (LSDA).20  All relativistic effects 

except spin-orbit coupling are taken into account using a scalar relativistic 

approximation.21  Within the ASA, space is filled with overlapping Wigner-Seitz 

(WS) atomic spheres.  The radii of the WS spheres are obtained by requiring the 

25



www.manaraa.com

overlapping potential to be the best possible approximation to the full potential 

according to an automatic procedure.22  Interstitial voids are filled by generating zero 

potential WS spheres without significantly increasing the overlapping sphere volume 

to fill 100% of the unit cell volume with WS spheres. The reciprocal space 

integrations to determine the self-consistent total energies and charge densities with 

the convergence criterion of 0.136 meV, densities of states (DOS) and crystal orbital 

Hamilton populations (COHP) 13 are performed by the tetrahedron method14 in the 

irreducible wedges of the corresponding Brillouin zones.  

 Methods based on the density functional theory (DFT) are the most widely 

used first principles methods in computational materials science and solid-state 

chemistry and physics.  This is due to their high computational efficiency and very 

good accuracy for ground state electronic properties.  DFT starts with a 

consideration of the entire many-body electron system.  Within DFT, all aspects of 

the electronic structure of the system of interacting electrons in the potential generated 

by atomic cores are determined completely by the electronic charge density (r)23.  

This allows the wavefunctions to be scaled down from 3N variables to 3 variables, 

where N represents the total number of electrons in the system.  In DFT, the total 

energy has three contributions: (1) a kinetic energy term; (2) a Coulomb energy term 

from the classical electrostatic interactions among all charged particles; and (3) the 

exchange-correlation energy term capturing all many-body electron-electron 

interactions: 

occup
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 The unknown correlation interactions can be estimated by using the local 

density approximation (LDA)24, which turns out to be surprisingly reliable for many 
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systems including metals and transition metal compounds.  In this approximation, 

the exchange-correlation energy is taken from the known results in a homogeneous 

electron gas of constant density. 

 For systems containing unpaired electrons, the spin-polarized density 

functional theory25 has been developed.  In this theory, both the electron density and 

the spin density are fundamental quantities with the net spin density being the 

difference between the up-spin and the down-spin electrons: 

(r) = (r) - (r) 

where the total electron density ( ) is the sum of these two densities and spin 

polarization ( ) is:

(r) = (r) - (r) 
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ABSTRACT 

A series of rhombohedrally distorted -brass structures involving a mixture of 

magnetically active 3d elements Cr and Fe, CrxFe1 xGa, are investigated by 

crystallographic, magnetic, and theoretical approaches.  Powder X-ray diffraction 

experiments on CrxFe1 xGa result in unit cell volume decrease as Fe content increases.  

Neutron powder diffraction and X-ray single crystal diffraction experiments reveal M2 

site prefers to have Cr atoms while M3 site prefers to have Fe atoms.  

Antiferromagnetically ordered metals resulting in overall ferromagnetically ordered unit 

cell are observed by a susceptibility measurement.  A first principles calculation 

indicated an existence of the Fermi level in a pseudogap. 
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Introduction 

The relationship between crystal structure and valence electron concentration 

(vec = # valence electrons / # atoms in the chemical formula) in -brass phases 

emphasizes how electronic structure can influence chemical compositions and atomic 

arrangements in complex intermetallic compounds.  The -brass structure belongs to 

a class of “Hume-Rothery” phases, which involve late and post-transition metals, 

whose structures are controlled by their vec values.37-39  Specifically, -brasses exist 

for vec values in the range 1.6 – 1.7, as found for Cu5Zn8, Cu9Al4, and Pd2Zn11.40  To 

determine the vec in these phases, only valence s and p electrons are utilized.  

Extensive first principles calculations on various -brass structures identify the 

existence of a pseudogap in the density of states (DOS) curve at the corresponding 

Fermi levels.  Although the structure itself leads to local minima in the electronic 

DOS curves at the Fermi level, the atomic distribution enhances the pseudogap, as in 

the Cu-Zn system, for example.36   In the Zn-Pd and Cd-Pd systems, slight 

variations in chemical composition lead to superstructure behavior of the -brass 

phases.41  The presence of a pseudogap in the DOS led to a cluster-counting rule that 

correctly accounts for the periodicity along a single dimension.  

In addition to these crystalline intermetallics, many quasicrystals are also 

called “Hume-Rothery electron phases.”  Ever since Fujiwara’s first band structure 

calculations on the approximants to Al-Mn quasicrystals revealed the existence of a 

pseudogap at the Fermi level,9 numerous empirical and ab initio studies have shown 

that the stability of various quasicrystalline phases and their approximants also give a 

similar outcome.  This so-called “Hume-Rothery stabilization rule” is important for 

the stability of many quasicrystals and their approximants. 

As part of an effort to study the properties and electronic structures of 
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quasicrystal approximants, we reported on the magnetic and structural characteristics 

of the series, MGa (M = Cr, Mn, Fe), which adopt the rhombohedral Cr5Al8 structure 

type.10(b)  In fact, this structure is a rhombohedral distortion of the cubic -brass 

structure, and this distortion has been attributed to electronic (“band structure”) 

factors.4  The isostructural series, CrGa-MnGa-FeGa, also shows a variation from 

antiferromagnetic to ferromagnetic behavior, which is important for gaining insights 

into the relationship between itinerant magnetism and energy band filling.10  In the 

present chapter, we report on the crystal structures of the ternary series CrxFe1 xGa, as 

well as their magnetic properties and theoretical electronic structures to examine the 

relationships among structure, composition and properties of quasicrystal 

approximants.   

Experimental Section 

Synthesis.   Eleven compositions in the series of CrxFe1 xGa (0  x  1) samples 

were prepared by heating the pure elements under controlled environments.  Prior to 

these reactions, Cr metal pieces (irregular, 99.99%, Alfa-Aesar) were cleaned in an 

acidic solution (1:3 ratio by volume of concentrated nitric and hydrochloric acids) for 

approximately 30 seconds, and rinsed with methanol; Fe metal pieces (irregular, 

99.97+%, Alfa-Aesar) were cleaned in an acidic ethanol solution (10:1 ratio by 

volume of ethanol and concentrated nitric acid) for 2 minutes, and rinsed with 

methanol; while Ga metal ingots (99.99%, Alfa-Aesar) were used without any 

pretreatment.  To prevent the formation of any oxide phases and to minimize the 

formation of other impurities, the elements were then individually melted in an arc 

furnace on a copper hearth under an argon atmosphere.  The subsequent surface 

oxide layer of the ingots was removed by filing.  The stoichiometric mixtures of 
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CrxFe1-xGa (0  x  1; increments of 0.1; loading errors were less than 0.01% by 

weight for 3g samples) were heated in sealed, evacuated silica tubes at 1323 K for 80 

hours to promote the optimum diffusion of Cr and Fe metals into liquid Ga.  After 

cooling at the rate of 1 K/min. to 1123 K, the homogenized sample was annealed at 

1123 K for 1 week.  Termination of the solid state reaction occurred by turning off 

the furnace and the product was allowed to be naturally cooled down to room 

temperature.  Visual inspections and powder X-ray diffraction experiments are taken 

after > 4 months of product formation.  The product appears to be stable against 

decomposition in both air and moisture over a period of several months at room 

temperature.   

Chemical Analysis.  The phase purity of the products was analyzed by Energy 

Dispersive Spectroscopy (EDS) (quantitative analysis) using a JEOL 840A scanning 

electron microscope, equipped with an IXRF Systems Iridium X-ray analyzer with 

Kevex Quantum thin-window Si(Li) detector for quantitative chemical analysis by 

standardless method.  Typical data collections utilized a 20 kV accelerating voltage 

and a 30 mA beam current.  No significant oxygen or silicon contamination was 

observed for all products.   

Diffraction Experiments.  Phase analysis was performed by powder X-ray 

diffraction (PXRD) at room temperature and crystal structures were confirmed and 

further refined by single-crystal X-ray diffraction (SXRD).  Temperature-dependent 

neutron powder diffraction was carried out specifically on “Cr0.5Fe0.5Ga” to obtain 

atomic distributions and possible magnetic structures. 

Powder X-ray Diffraction: Phase characterizations were performed on several 

separately prepared samples from each of the products by room-temperature powder 
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X-ray diffraction using an Enraf Nonius Guinier camera with Cu K  radiation (  = 

1.540598 Å) and Si as an internal standard.  Patterns were collected for 2  values 

ranging from 10º to 95º at increments of 0.02º.  Lattice parameters were determined 

by the Rietveld15 profile fitting method using program Rietica for all samples; atomic 

parameters were refined using the General Structure Analysis System (GSAS) 

program package11 for the single phase sample of “Cr0.5Fe0.5Ga.”  Furthermore, to 

compare with subsequent neutron powder diffraction experiments, temperature-

dependent powder X-ray diffraction measurements were carried out on “Cr0.5Fe0.5Ga” 

for eight different temperatures between ca. 15 K and 300 K.  All the powder 

experiments required an exposure time of 120 min or more to obtain peak intensities 

high enough to be refined because all patterns showed very high background 

intensities.   

Single Crystal X-Ray Diffraction.  Several irregularly shaped small crystals with the 

average approximate dimensions of (120 m3) were selected from crushed samples of 

various CrxFe1 xGa products and mounted on glass fibers.  Each data set was 

collected on a Bruker Apex diffractometer at 295(2) K using monochromated MoK  

radiation (  = 0.71073 Å) and a detector-to-crystal distance of 5.990 cm.  Diffraction 

data were collected in a hemisphere or full sphere of reciprocal space with 0.3o scans 

in  for an exposure time of 10 sec per frame up to a maximum 2  value of 56.55o.  

Intensities were extracted and then corrected for Lorentz and polarization effects 

using the SAINT program.12  The program SADABS was used for empirical 

absorption corrections.13  To complete the analysis, full-matrix least-squares 

refinements on F2 were performed by using the SHELXTL-PLUS programs.14   

Neutron Powder Diffraction on Cr0.5Fe0.5Ga.  Due to the nearly indistinguishable X-

ray scattering factors between Cr and Fe, neutron powder diffraction experiments 
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were performed on a ca. 5 g powder sample of “Cr0.5Fe0.5Ga” to achieve better 

resolution of the transition metal site occupancies.  Indeed, the elastic neutron cross 

sections for Cr (1.66 × 10 24 cm2) and Fe (11.22 × 10 24 cm2) are significantly 

different to allow us to refine site distributions accurately.  Time-of-flight (TOF) 

neutron diffraction data were collected at 11 K, 30 K, and 295 K on the Neutron 

Powder Diffractometer (NPDF) at the Manuel Lujan Neutron Scattering Center of 

Los Alamos National Laboratory.  This instrument is a high-resolution powder 

diffractometer located at flight path 1, 32 m from the spallation neutron target.  The 

data were collected using the 148°, 119°, 90° and 46° banks, which cover a d-spacing 

range from 0.12 to 7.2 Å.  

The structures at 11 K, 30 K and 295 K were refined using the GSAS package 

with a Rietveld profile analysis program15 by using the MnGa structure as the starting 

structural model. The refinements were performed using the four banks (148°, 119°, 

90° and 46°) simultaneously to obtain unit cell parameters, atomic positions, and 

equivalent isotropic displacement parameters.  Background coefficients, scale factors, 

isotropic strain terms in the profile function, and sample absorption were also refined 

for a total of 63 parameters using the centrosymmetric space group 3R m .  

Alternative refinements were carried out in the space groups R3m and 3R .  To 

elucidate the arrangement and concentration of Cr and Fe in “Cr0.5Fe0.5Ga”, the 

occupancies were also refined, which added three parameters.   

Magnetic Susceptibility Measurements.  A polycrystalline sample of 

“Cr0.5Fe0.5Ga” was used for magnetic susceptibility measurements over the 

temperature range from 1.7-300 K in applied magnetic fields of 1 and 10 kOe by 

employing a Quantum Design superconducting quantum interference device (SQUID) 

magnetometer with a 7-T superconducting magnet. Temperature-dependent 
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magnetization data were collected after the powder sample was placed in a gel-

capsule fixed in a straw by first measuring zero-field cooled (ZFC) magnetization, 

and then the field-cooled (FC) data.  All collected data were assessed with the 

magnetic property measurement system (MPMS-5) software supplied by Quantum 

Design.16   

Electronic Structure Calculations.  Theoretical electronic structures on various 

models of CrxFe1 xGa were calculated self-consistently by using the tight-binding, 

linear muffin-tin-orbital (TB-LMTO) method17-20 within the atomic sphere 

approximation (ASA) using the Stuttgart code.21  Exchange and correlation were 

treated in a local spin density approximation (LSDA).22 All relativistic effects except 

spin-orbit coupling were taken into account using a scalar relativistic approximation.23  

Within the ASA, space is filled by overlapping Wigner-Seitz (WS) atomic spheres.  

The radii of these WS spheres were obtained by requiring the overlapping potential to 

be the best possible approximation to the full potential according to an automatic 

procedure.24  The WS radii for the atomic sites determined by this procedure are in 

the ranges 1.465-1.535 Å for Ga sites, 1.461-1.475 Å for Cr, and 1.455-1.481 Å for Fe.  

The basis set included 4s and 4p orbitals for Ga; 4s, 4p and 3d orbitals for Cr and Fe.  

The reciprocal space integrations to determine the self-consistent total energies and 

charge densities, densities of states (DOS) curves and crystal orbital Hamilton 

population (COHP)25 curves were performed by the tetrahedron method26 using 417 

k-points for Cr7Fe6Ga13 and 189 k-points for the rest of the model structures in the 

irreducible wedges of the corresponding Brillouin zones.  

Results and Discussion 

Phase Identification.  Results obtained from energy dispersive spectroscopy, as well 
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as powder and single crystal X-ray diffraction, are summarized in Table 1.  Most 

specimens showed multiple phases by EDS.  Throughout the composition range in 

CrxFe1 xGa from x = 0.1 to x = 0.9, the major phase was identified as the 

rhombohedral Cr5Al8-type structure, and the subsequent refinements proceeded well 

using the centrosymmetric space group 3R m .  The equimolar mixture, Cr0.5Fe0.5Ga, 

produced an essentially single-phase product according to both EDS and PXRD 

measurements.  Fe-rich samples (x < 0.5) yielded majority products near the targeted 

compositions.  For loaded compositions with x  0.2, a monoclinic Fe3Ga4-type 

phase could be indexed by PXRD as a secondary phase.  On the other hand, Cr-rich 

samples (x > 0.5) typically resulted in the targeted structure with lower Cr content as 

well as other ternary phases. For the range 0.7  x  0.9, a cubic Cr3Ga-type structure 

was indexed, and for the samples with x = 0.7 and 0.8, an additional tetragonal FeGa3-

type phase was also identified by PXRD.  Throughout the entire composition range, 

no other impurity peaks were observed by PXRD.  For the binary specimens, the Fe-

Ga preparation yielded a mixture of Fe3Ga4, Fe2Ga and FeGa; the Cr-Ga preparation 

produced CrGa, Cr3Ga, Cr2Ga, and CrGa4. 

Structure Determinations.  The structures of CrxFe1 xGa were solved by both 

powder and single crystal X-ray diffraction; the refinement results are summarized in 

Tables 1 and 2.  The variations in lattice parameters with composition are in good 

agreement between powder and single crystal diffraction results.  Furthermore, the 

refined compositions from single crystal X-ray diffraction analyses are consistent with 

those from EDS: Cr-rich specimens showed refined compositions with a reduced 

Cr:Fe ratio than the loaded composition.  Figure 1 illustrates the variation in volume 

per CrxFe1 xGa formula unit based on refined chemical compositions and 

corresponding diffraction data:  only the single crystal X-ray diffraction refinements 
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Table 2.  Atomic parameters and isotropic temperature factors (Å2) for the CrxFe1-

xGa phases. 
 
Atom  SOF(Cr/Fe) x y z Ueq 

Loaded:  Cr0.1Fe0.9Ga                Refined:  Cr0.06(0)Fe0.94(0)Ga 

Ga1 3a  0 0 0 0.007(1) 

Ga2 18h  0.2321(1) 0.1161(1) 0.5758(2) 0.009(1) 

Ga3 18g  0.3854(1) 3854(1)  1/2 0.007(1) 

M1 3b 0/1 0 0  1/2 0.005(1) 

M2 18h 0.14/0.86(10) 0.4322(2) 0.2161(1) 0.4111(2) 0.005(1) 

M3 18h 0/1 -0.0723(1) 0.0723(1) 0.2498(2) 0.006(1) 

Loaded:  Cr0.2Fe0.8Ga                Refined:  Cr0.24(23)Fe0.76(23)Ga 

Ga1 3a  0 0 0 0.008(1) 

Ga2 18h  0.2325(2) 0.1163(1) 0.5750(2) 0.007(1) 

Ga3 18g  0.3857(2) 3857(2)  1/2 0.005(1) 

M1 3b 0.3/0.7(3) 0 0  1/2 0.005(1) 

M2 18h 0.34/0.66(15) 0.4333(2) 0.2167(1) 0.4103(3) 0.003(1) 

M3 18h 0.12/0.88(15) -0.0719(1) 0.0719(1) 0.2492(3) 0.004(1) 

Loaded:  Cr0.3Fe0.7Ga                Refined:  Cr0.25(16)Fe0.75(16)Ga 

Ga1 3a  0 0 0 0.007(1) 

Ga2 18h  0.2329(2) 0.1164(1) 0.5746(3) 0.009(1) 

Ga3 18g  0.3859(2) 3859(2)  1/2 0.007(1) 

M1 3b 0.5/0.5(3) 0 0  1/2 0.003(2) 

M2 18h 0.36/0.64(15) 0.4335(2) 0.2168(1) 0.4109(3) 0.007(1) 

M3 18h 0.09/0.91(15) -0.0720(1) 0.0720(1) 0.2502(3) 0.007(1) 

Loaded:  Cr0.4Fe0.6Ga                Refined:  Cr0.50(12)Fe0.50(12)Ga 

Ga1 3a  0 0 0 0.009(1) 

Ga2 18h  0.2330(1) 0.1165(1) 0.5745(2) 0.010(1) 

Ga3 18g  0.3858(1) 3858(1)  1/2 0.008(1) 

M1 3b 0.6/0.4(2) 0 0  1/2 0.003(2) 

M2 18h 0.70/0.30(11) 0.4341(2) 0.2170(1) 0.4114(3) 0.006(1) 

M3 18h 0.28/0.72(11) -0.0718(1) 0.0718(1) 0.2498(2) 0.007(1) 
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Loaded:  Cr0.6Fe0.4Ga                Refined:  Cr0.65(14)Fe0.35(14)Ga 

Ga1 3a  0 0 0 0.009(1) 

Ga2 18h  0.2339(2) 0.1169(1) 0.5736(2) 0.008(1) 

Ga3 18g  0.3855(1) 0.3851(1)  1/2 0.007(1) 

M1 3b 0.80/0.20(16) 0 0  1/2 0.003(2) 

M2 18h 0.67/0.33(7) 0.4359(2) 0.2179(1) 0.4108(3) 0.006(1) 

M3 18h 0.34/0.66(7) -0.0712(1) 0.0712(1) 0.2498(2) 0.005(1) 

Loaded:  Cr0.7Fe0.3Ga                Refined:  Cr0.47(11)Fe0.53(11)Ga 

Ga1 3a  0 0 0 0.006(1) 

Ga2 18h  0.2336(1) 0.1168(1) 0.5741(2) 0.008(1) 

Ga3 18g  0.3854(1) 3854(1)  1/2 0.006(1) 

M1 3b 0/1 0 0  1/2 0.006(1) 

M2 18h 0.70/0.30(10) 0.4351(2) 0.2176(1) 0.4111(2) 0.004(1) 

M3 18h 0.31/0.69(10) -0.0717(1) 0.0717(1) 0.2498(2) 0.005(1) 

Loaded:  Cr0.8Fe0.2Ga                Refined:  Cr0.33(14)Fe0.67(14)Ga 

Ga1 3a  0 0 0 0.006(1) 

Ga2 18h  0.2346(2) 0.1173(1) 0.5727(3) 0.010(1) 

Ga3 18g  0.3852(2) 3852(2)  1/2 0.008(1) 

M1 3b 1/0 0 0  1/2 0.003(2) 

M2 18h 0/1 0.4373(3) 0.2187(2) 0.4111(4) 0.006(1) 

M3 18h 0.55/0.45(18) -0.0715(2) 0.0715(2) 0.2505(4) 0.006(1) 

Loaded:  Cr0.9Fe0.1Ga                Refined:  Cr0.81(11)Fe0.19(11)Ga 

Ga1 3a  0 0 0 0.005(1) 

Ga2 18h  0.2349(1) 0.1175(1) 0.5730(2) 0.009(1) 

Ga3 18g  0.3846(1) 3846(2)  1/2 0.007(1) 

M1 3b 1/0 0 0  1/2 0.003(1) 

M2 18h 1/0 0.4371(2) 0.2185(1) 0.4118(3) 0.005(1) 

M3 18h 0.59/0.41(10) -0.0717(1) 0.0717(1) 0.2503(2) 0.005(1) 
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were used for this plot due to the high backgrounds on the powder X-ray diffraction 

patterns.  According to Figure 1, as the Fe content increases, there is a monotonic 

decrease in the volume, which is consistent with the size relationship between Cr and 

Fe atoms based on 12-coordinate metallic radii (rCr = 1.26 Å and rFe = 1.25 Å).42  

Furthermore, we have no conclusive evidence for the existence of a rhombohedral 

phase for Cr-rich samples, at least for x > 0.33.  On Figure 1, we include the volume 

for MnGa, which is considerably larger than the isoelectronic and equiatomic 

Cr0.5Fe0.5Ga. 

Single crystal X-ray diffraction experiments on selected crystals from each of 

the products yielded atomic positions and an estimation of the site occupancies for Cr 

and Fe atoms.  Table 2 lists the atomic coordinates, site occupancies, and equivalent 

displacement parameters for the single crystal samples listed in Table 1.  Figure 2 

illustrates views of a representative CrxFe1 xGa structure both parallel and 

perpendicular to the c-axis.  These views are compared with related views of the 

cubic -brass structure, views that are parallel and perpendicular to the [111] direction 

of the cubic cell.  Based on the centrosymmetric space group 3R m , the Cr5Al8 

structure type contains six atoms in the asymmetric unit: three sites are occupied by 

Ga; three sites are occupied by non-statistical mixtures of Cr and Fe atoms.  The 

rhombohedral structures of CrxFe1 xGa are built of chains of face-sharing, atom-

centered icosahedra along the c-axis.  There are two types of icosahedra: (i) Ga-

centered, (Cr, Fe)12 icosahedra; and (ii) (Cr, Fe)-centered, [(Cr, Fe)6Ga6] icosahedra, 

which alternate along the c-axis.  Each of these icosahedra is surrounded by a 

pentagonal dodecahedron: around (i) is found a [(Cr, Fe)2Ga18] polyhedron; around 

(ii) occurs a [(Cr, Fe)6Ga14] dodecahedron.  With these pseudo-pentagonal polyhedra 

forming important building blocks, these structures are interesting for their 
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relationships with icosahedral quasicrystals and their crystalline approximants. 

To gain a better understanding of the distribution of Cr and Fe atoms in these 

phases, as well as to explore possible magnetic structures, temperature-dependent 

neutron diffraction measurements on a polycrystalline sample of “Cr0.5Fe0.5Ga” were 

conducted.  Figure 3 illustrates the observed and calculated neutron diffraction 

patterns at 295 K as an example.  Figure 4 illustrates the temperature-dependent 

lattice constants as measured by both neutron and X-ray powder diffraction; the trends 

are identical, while the lattice parameters determined from the neutron data are 

systematically lower than those obtained from X-ray diffraction.  Refinements of the 

neutron data, which included background coefficients, scale factors, profile functions 

and absorption coefficients, as well as relaxing the site occupancies for Cr and Fe, 

smoothly converged to give solutions with 2 values, respectively, of 4.504, 4.781, 

and 3.694 at 11 K, 30 K, and 295 K.  Additional refinements were evaluated for 

space groups R3m and 3R , neither of which resulted in significant improvements to 

the results.  Table 3 summarizes the atomic parameters, site occupation factors, and 

equivalent isotropic displacement parameters for the asymmetric unit (again based 

upon the space group 3R m ).   

 Based on the neutron refinements, the refined average composition of the 

powder sample “Cr0.5Fe0.5Ga” in the unit cell is Cr19.7(4)Fe19.3(4)Ga39, or 

Cr0.505(1)Fe0.495(1)Ga.  The special position, Wyckoff site 3b is slightly richer in Cr 

than Fe.  Among the two distinct sites building up the (Cr, Fe)12 icosahedra centered 

by Ga atoms, the trigonal faces linked to the 3b site are richer in Fe atoms; the “waist” 

of the icosahedron is richer in Cr atoms.  According to these refinements, these site 

occupancies are approximately 2/3 occupancy by Cr atoms at the M1 site, and the 

other site (M2) connecting the adjacent icosahedra shows approximately 2/3 
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Table 3.  Fractional atomic coordinates, site occupation factors and equivalent 
isotropic displacement parameters for Cr0.5Fe0.5Ga at 11 K, 30 K and 295 K as refined 
by neutron powder diffraction (Rietveld method-space group R-3m). 
 
Sites SOF (Cr/Fe) x y z Ueq 
11 K 

Cell parameters          a=b=12.5172(2) Å, c=7.83255(15) Å 

 
Ga1 (3a)  0 0 0 0.00506(13) 
Ga2 (18h)  0.23328(4) 0.11664(2) 0.57472(5) 0.00448(7) 
Ga3 (18g)  0.38580(3) 0.38580(3) 0.5 0.00412(7) 
M3 (3b) 0.577(5)/0.423(5) 0 0 0.5 0.00247(6) 
M1 (18h) 0.625(2)/0.375(2) 0.43369(4) 0.21684(2) 0.41218(6) 0.00363(6) 
M2 (18h) 0.366(3)/0.634(3) -0.07156(2) 0.07156(2) 0.24985(6) 0.00407(6) 
30 K 

Cell parameters          a=b=12.5170(2) Å, c=7.83261(15) Å 

 
Ga1 (3a)  0 0 0 0.00507(13) 
Ga2 (18h)  0.23327(4) 0.11664(2) 0.57471(5) 0.00459(7) 
Ga3 (18g)  0.38576(3) 0.38576(3) 0.5 0.00414(7) 
M3 (3b) 0.568(5)/0.432(5) 0 0 0.5 0.00288(8) 
M1 (18h) 0.627(2)/0.373(2) 0.43370(4) 0.21685(2) 0.41221(6) 0.00365(8) 
M2 (18h) 0.366(3)/0.634(3) -0.07156(2) 0.07156(2) 0.24989(6) 0.00402(8) 
295 K 

Cell parameters          a=b=12.5448(4) Å, c=7.8557(2) Å 

                      (Powder X-ray diffraction: a=b=12.54653(32) Å, c=7.85602(21) Å)
Ga1 (3a)  0 0 0 0.0096(2) 
Ga2 (18h)  0.23302(5) 0.11651(3) 0.57462(8) 0.01167(15) 
Ga3 (18g)  0.385303 0.385303 0.5 0.01008(14) 
M3 (3b) 0.587(9)/0.413(9) 0 0 0.5 0.0054(3) 
M1 (18h) 0.636(1)/0.364(1) 0.433807 0.216902 0.411183 0.00720(15) 
M2 (18h) 0.383(5)/0.617(5) -0.071547 0.071547 0.249712 0.00744(12) 
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occupancy by Fe atoms. 

A neutron pair-distribution-function (PDF) analysis was also performed to 

investigate local structure.  A combined study of Rietveld and neutron PDF analysis 

is generally helpful to provide information about the long-, medium- and short-range 

ordering in a structure. Indeed, Rietveld analysis determines only the average long-

range structure because it only takes into account the intensity and the position of the 

Bragg peaks, whereas PDF analysis also includes information contained in the diffuse 

scattering. This additional information is very helpful to identify the existence of any 

possible short-range order. Moreover, PDF analysis allows the structure to be refined 

at various ranges in distance r.  In the case of “Cr0.5Fe0.5Ga,” we are particularly 

interested to know if any special local ordering is observable between Cr and Fe 

atoms for any length scale, as well as to distinguish between centrosymmetric or 

noncentrosymmetric space groups. 

Neutron PDFs were corrected for background, the incident neutron spectrum, 

absorption and multiple scattering, and normalized using the vanadium spectrum to 

obtain the total scattering structure factor, S(Q), using the program PDFgetN.27  The 

PDF G(r) was obtained from S(Q) via the Fourier transform 

max

0 0

24 1 sin
Q

G r r r Q S Q Qr dQ , 

where (r) and 0, respectively, are the atomic pair number density and average 

number density. The data were terminated at Qmax = 40 Å 1.  PDF modeling was 

carried out using the program PDFGUI28 by using the results obtained from the 

Rietveld refinement as the starting structural model.  At first, we relaxed numerous 

symmetry constraints but no significant improvements were observed, which indicates 

that the centrosymmetric space group 3R m  is the best choice to describe the 

average structure.  Secondly, a total relaxation has been investigated to model 
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possible short range ordering on the network of Cr and Fe sites, e.g., local domains of 

Cr or Fe atoms as “islands” or “strips.”  As presented in Figure 5, the fit is 

impressively good up to r = 40 Å, which implies that no disorder is observable at least 

up to that length scale.  Therefore, neutron PDF analysis indicates that the local 

structure and the average structure obtained from Rietveld refinement are quite similar.  

Magnetization Studies.  According to our phase analysis by EDS and PXRD, only 

the loaded sample Cr0.5Fe0.5Ga produced single-phase product.  Thus, temperature-

dependent magnetic susceptibility measurements were limited to this sample.  Figure 

6 illustrates the temperature-dependent inverse susceptibility curve measured in a 1 

kOe external field.  A low-field transition from paramagnetic to ferrimagnetic 

ordering was observed near 25 K as an upturn in the inverse susceptibility curve.  

Above 25 K, the linear behavior suggests Curie-Weiss behavior with an effective 

magnetic moment of 0.27 B.  Extrapolating the linear curve yields a Weiss constant 

of ca. 15.3 K.  The upper inset in Figure 6 shows the low-temperature field-cooled 

and zero field-cooled susceptibilities, from which a Néel temperature (TN) is estimated 

to be 20.0(5) K.  Also seen in the (H) curves from the lower inset to Figure 6 is a 

small hysterisis with metamagnetic-like behavior, which is indicated by changes in 

( 2H/ 2) going from low field to high field in the lower field region. It is apparent 

from the upper inset to Figure 6 describing the behavior of (T) at low temperatures, 

GaCr0.5Fe0.5 orders antiferromagnetically below 20.0(5) K with spin fluctuations.   

The variation of the lattice parameters with temperature, as observed by both 

neutron and X-ray powder diffraction, shows nonlinear behavior at lower 

temperatures.  The high-temperature, paramagnetic phase exhibits a larger volume, 

than the extrapolation of the low-temperature lattice constants to higher temperatures.  

Thus, we see the existence of magnetostriction.28  This is further confirmed by 

49



www.manaraa.com

 

 
 

Fi
gu

re
 6

. 
 M

ag
ne

tic
 su

sc
ep

tib
ili

ty
 m

ea
su

re
d 

on
 p

ow
de

r s
am

pl
es

 o
f C

r 0
.5
Fe

0.
5G

a.
 

50



www.manaraa.com

looking at the reflections in real space rather than in reciprocal space obtained by 

Fourier transformation of the raw neutron powder diffraction data to generate the pair 

distribution function (PDF, Q(r)).28 As shown in Figure 5, reflections are split more at 

30 K than at 11 K while going through the magnetic phase transition around 20 K.  

This is unusual since PDF curves show peak smoothing effects upon temperature 

increase suggesting possible atomic reorientations of the metals during the magnetic 

phase transition without any lattice transformation.42 

Relationship to -Brasses.  The rhombohedral structures of CrxFe1 xGa are closely 

related to the cubic -brass structure by showing similar one-dimensional chains of 

icosahedra, and are isostructural with many rhombohedrally distorted Cr5Al8-type 

structures with  < 90  found in the Al-Cr, Al-Cu, Ga-Cr, Ga-Mn, and Ga-Fe 

systems.4  All structures share the fundamental building block of four tetrahedrally 

fused icosahedra, which are illustrated in Figure 1.  In the cubic -brass structure, 

four icosahedra construct a perfect tetrahedron by sharing faces, but in the 

rhombohedrally distorted structure, three icosahedra share faces with one sitting on 

top of the other three sharing only edges.   

 Another description of cubic -brass structures utilizes a body-centered cubic 

packing of 26-atom clusters formed by the following “shells” of atoms: (i) an inner 

tetrahedron; (ii) an outer tetrahedron of sites capping each face of the inner 

tetrahedron; (iii) an octahedron sitting over each edge of the outer tetrahedron; and 

(iv) a distorted cuboctahedron.  A recent investigation of 5 8Cu Zn ,x x  which 

combined neutron powder diffraction with electronic structure theory, demonstrated 

that the inner tetrahedron is always fully occupied by Zn atoms, the outer tetrahedron 

is always fully occupied by Cu atoms, and that the range in composition occurs by 

subsequent statistical occupation by Cu and Zn atoms in the octahedron and 
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cuboctahedron.36  The structures of CrxFe1 xGa resemble this pattern: (i) the inner 

tetrahedron is formed by the transition metals Cr and Fe (M1 + 3 M3 sites); (ii) the 

outer tetrahedron is exclusively formed by Ga atoms (Ga1 + 3 Ga2 sites); (iii) the 

octahedron involves three transition metals and three Ga atoms (3 Ga2 + 3 M2 sites); 

and (iv) the cuboctahedron contains six transition metals and six Ga atoms (6 Ga3 + 3 

M2 + 3 M3 sites).  Thus, the two inner tetrahedra form a kernel, [M4Ga4], while the 

outer octahedron and cuboctahedron provide a 3D template in which these clusters are 

encapsulated.  This template shows mixed site occupancies in either an ordered (as 

in CrxFe1 xGa) or disordered (as in 5 8Cu Znx x ) manner. 

Pearson et al. have suggested that the rhombohedral distortion of the cubic -

brass structure occurs as a result of band structure energy stabilization when the 

number of conduction electrons per 52-atom unit cell increases from the range ca. 84-

90 electrons (vec = 1.615 – 1.730) to values ca. 95-100 electrons (vec = 1.827 – 

1.923).4   In this formalism, only valence s and p electrons are counted; valence d 

electrons do not contribute.  The contribution of the transition metals to the number 

of conduction electrons is confusing in this context: in some counting schemes, Cr 

and Fe would contribute no conduction electrons; in others, they would be counted as 

one electron.4  Nevertheless, the total valence electron counts for the cubic and 

rhombohedral cases differ significantly: if we include all valence d electrons, 

including the 3d core like electrons for the post-transition element Ga, then the 

valence electron count for the CrxFe1 xGa series would range from 9.5-10.5 spd 

electrons per atom, while the cubic -brasses would require ca. 11.6 spd electrons per 

atom.  Nevertheless, based upon the phases showing rhombohedral distortions, the 

Fermi level will fall among valence d orbitals of the transition metal, whereas the -

brasses show the valence d bands to be somewhat below the Fermi level. 
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Electronic Structure.  The calculated electronic structures of various models from 

the CrxFe1 xGa series were determined and analyzed to assess the trends in observed 

compositions, the distribution of Cr and Fe atoms in the structure, and to understand 

the magnetic character of Cr0.5Fe0.5Ga. 

Phase analysis:  Through a combination of EDS and diffraction experiments, the 

CrxFe1 xGa series does not form a homologous series between CrGa and FeGa.  Cr-

rich samples tend toward multiple phases with the rhombohedral phase showing a Fe 

content higher than the loaded composition.  On the other hand, Fe-rich samples 

produce rhombohedral phases with compositions in line with the loaded ones.  To 

gain some insights into this trend, the total energies of various models of the mixed-

metal systems Cr13-nFenGa13, 0  n  13 are compared against the appropriate mixture 

of Cr13Ga13 and Fe13Ga13.  Figure 7 illustrates the trend in these relative energies, 

which can be expressed as 

  1 113, 13 0
13 13

i n nE n i E n E E , 

where iE n  is the total energy of Model i of CrnFe13 nGa13.  Therefore, E(1)(0) 

and E(1)(13) are the total energies, respectively, of Cr13Ga13 and Fe13Ga13.  Figure 7 

displays the results as a band of accessible energy differences because there are three 

different sites available for Cr and Fe atoms in the rhombohedral structure.  The 

trend in this energy difference curve resembles the effect of different third moments of 

the electronic densities of states on the relative total energies.40  According to this 

moments argument, the weighted average of the third moments of the densities of 

states of Cr13Ga13 and Fe13Ga13 will be higher than the third moments of 

CrnFe13 nGa13.  The third moment is a measure of the skewness of the density of 

states function, and indicates the differences in three-membered rings in the different 
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structures.  In this case, a ring corresponds to a sequence of atoms connected to each 

other by valence orbital overlap. 

 In Figure 7, the energetic trends are highlighted for Cr and Fe atoms, 

respectively, occupying the 3b special position in the rhombohedral structure, which 

is the transition metal site at the center of [M6Ga6] icosahedra and which also link two 

adjacent Ga-centered M12 icosahedra along the c-axis.  There is a clear preference 

for Cr in this special position over Fe atoms.  The next preference for Cr is the M1 

site, although the corresponding energy differences become less distinguishing.  

According to the refinement of site occupancies in Cr0.5Fe0.5Ga by neutron diffraction, 

this theoretical conclusion is in line with experiment.  

  Spin polarized TB-LMTO-ASA band calculations were performed for several 

hypothetical model structures to see the effects of different “coloring” schemes on the 

electronic structures of the models: (1) Cr7Fe6Ga13 (2) Cr6Fe7Ga13 (3) Cr6Fe6MnGa13 

(4) Mn13Ga13 using the atomic structure data obtained by the single crystal X-ray 

diffraction structure refinement results on Cr0.5Fe0.5Ga.  The first model (1) 

represents the structure which is closest to the refined atomic structure from the 

neutron analysis with simplified metal site occupancies; for example, M1 site is 

slightly more occupied by Cr than Fe therefore Cr was used for this site for the 

calculation.  However, electronically this would not be the closest structure to 

resemble the refined composition.  So Models (3) & (4) were constructed to 

represent structures with numbers of valence electrons closer to the refined 

composition.  For Model (3), only the M1 site at the center of the icosahedra is 

occupied by Mn to reach the total valence electron count of 130 e-, whereas all metal 

sites are occupied by Mn in Model (4) to achieve the same number of valence 

electrons; the valence electron for the refined composition Cr19.68Fe19.32Ga39 is 129.88 
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e-.  Model (4) also gives an idea about the “coloring” effect by having a homoatomic 

transition metal gallide rather than heteroatomic transition metal gallide.  In addition, 

to examine the effect of Fe in the icosahedra site (3b), a calculation on Model (2) was 

also carried out. 

The resulting DOS curves are shown in Figure 8 and 9 for calculations on 

model structures (1)-(4).  It can be clearly seen that the states from all three metal 

sites are widely spread over the energy range from above the Fermi energy down to 

lower than 5 eV and the Fermi levels lie in the pseudogap, which suggests that the 

structure is influenced by favorable metal-metal orbital mixing.  In Figure 8, the 

Fermi levels for CrGa ad FeGa also indicated to give an idea of qualitative limits of 

structural flexibility.  Furthermore, the pseudogap is created by the Fe-3d and Cr-3d 

orbital mixing when forming the icosahedra as shown in the figure (1a); the Cr in the 

center of the (3b) site does not contribute significantly to the formation of the 

pseudogap at the Fermi level.  The Fermi level for 130 e- is found on a sharp 

declining slope of the DOS, which achieved electronic stabilization via spin 

polarization.  Increasing the electron count will lead to further splitting of the 

majority and minority spin bands; decreasing the electron count will lead to 

disproportionation into CrGa and a Fe-richer CrxFe1-xGa phases.  By placing Mn in 

the (3b) site, the structure now is considerably altered with high magnetic moments on 

two different metal sites (Table 4).  In DOS Figure (3) & (4), the downspin states are 

splitted shifting the Fermi level not at the pseudogap.  However, about 2.5 eV above 

the Fermi level, a pseudogap could be found which suggests the structure might be 

possible to aim for this optimization point by having higher vec with Fe-richer 

composition. 

The splitting of the DOS profile is noticeable in the vicinity of the Fermi level 
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Figure 8.  Density of States curves for: (1) Cr7Fe6Ga13 (2) Cr6Fe7Ga13 (3) 
Cr6Fe6MnGa13 (4) Mn13Ga13 (top to bottom).  The dotted lines represent the EF 
obtained from calculations while the solid lines represent the EF for experimentally 
obtained electron counts. 
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especially for the majority states.  This is possibly a consequence of the metal-metal 

interaction in the icosahedra network induced by the itinerant magnetism of the 

individual transition metals.  When Fe centers the icosahedra network, as shown in 

DOS Figure (2), the Fermi level is not near the pseudogap, which indirectly suggests 

these structures favors Cr-rich icosahedra centers, in agreement with the experimental 

results.  

Table 4 summarizes the calculated magnetic moments in model structures (1) 

– (4). Although isostructural with previously studied binaries CrGa,10(b) MnGa,10(a) 

and FeGa10(b) with significant atomic magnetic moments (MCr = ~ 0.8 B, MMn = ~2.0 

B, and MFe = ~ 2.1 B), the ternary compound was calculated to give the 

ferrimagnetic structure with close to quenched local magnetic moments for all atoms 

including the transition metals.  The two (18h) sites are antiferromagnetically 

oriented with higher local moments in M3 site in Model (1) and (2), whereas M3 

site’s local moment is significantly lower than the moment in M2 site in Model (3).  

In Model (4), all three metal sites have similar local moments.   

In Figure 10, Crystal Orbital Hamilton Population (COHP) curves are shown 

for the three predominant interactions constructing the icosahedra in Models (1) - (4): 

M-M interactions at 2.514 Å; M-M interactions at 2.590 Å; and Ga-M interactions at 

2.708 Å. In the Mn system (right), many of the antibonding states are filled, especially 

for the minority spin states.  In the Cr-Fe case, heteroatomic interactions induce a 

significant decrease in splitting between the two spin states resulting in shift of the 

Fermi level toward the cross-over point.  In both cases, the possible bonding 

optimizations can occur on all three contacts by removing valence electrons.  

 

Conclusions 
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Figure 10.  Crystal Orbital Hamilton Population curves for (1) Cr7Fe6Ga13 (2) 
Cr6Fe7Ga13 (3) Cr6Fe6MnGa13 (4) Mn13Ga13 model structures (left to right).  Three 
different bonding interactions composing icosahedron are shown with individual spin 
states. 
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The cubic -brass structure of Cr5Al8 and rhombohedral CrxFe1 xGa have 

similar crystal structural schematics with a one-dimensional icosahedra network 

isolated by the surrounding IIIB elements.  However, as shown in Figure 1, trigonal 

distortion occurs from the cubic -brass structure in the CrxFe1 xGa series via shift of 

one icosahedron unit from the tetrahedrally stacked icosahedra cluster.  Also, the 

band structure calculations indicated the existence of the pseudogap near the Fermi 

energy that favored the structural distortion to accommodate the changes in electron 

counts.  Also the analysis on PDF refinements from neutron diffraction experiments 

showed how the local structural coloring of individual transition metals occur in those 

systems which could not be seen by Rietveld analysis. 
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Supplement table 1.  Single Crystal X-ray diffraction data and structure refinement 

results for CrxFe1-xGa. 

 
Empirical formula  Cr0.06(0)Fe0.94(0)Ga Cr0.24(23)Fe0.76(23)Ga 

Temperature  293(2) K 293(2) K 

Wavelength  0.71073 Å 0.71073 Å 

Crystal system  rhombohedral rhombohedral 

Space group  R 3 m R 3 m 

Unit cell dimensions a = 12.4695(18) Å a = 12.4927(18) Å 

 c = 7.7807(16) Å 
 = 120  

c = 7.8070(16) Å 
 = 120  

Volume 1047.7(3) Å3 1055.2(3) Å3 

Z 12 12 

Absorption coefficient 14.511 mm-1 14.409 mm-1 

F(000) 972 972 
Theta range for data 
collection 3.23 to 28.17°. 3.22 to 28.15°. 

Index ranges 
-16  h  10, 
-12  k  15,  
-8  l  9 

-16  h  13,  
-13  k  15,  
-6  l  10 

Reflections collected 1192 2262 

Independent reflections 307 [R(int) = 0.0736] 328 [R(int) = 0.0671] 
Completeness to theta = 
28.25 92.7 %  98.2 %  

Refinement method Full-matrix least-squares 
on F2 

Full-matrix least-squares 
on F2 

Data / restraints / 
parameters 307 / 0 / 30 328 / 0 / 32 

Goodness-of-fit on F2 1.343 1.455 
Final R indices 
[I>2sigma(I)] 

R1 = 0.0404,  
wR2 = 0.0825 

R1 = 0.0506,  
wR2 = 0.1109 

R indices (all data) R1 = 0.0422,  
wR2 = 0.0836 

R1 = 0.0509,  
wR2 = 0.1110 

Extinction coefficient 0.00131(10) 0.00164(17) 
Largest diff. peak and 
hole 1.381 and -1.720 e. Å-3 1.770 and -2.471 e.Å-3 
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Empirical formula  Cr0.25(16)Fe0.75(16)Ga Cr0.50(12)Fe0.50(12)Ga 

Temperature  293(2) K 293(2) K 

Wavelength  0.71073 Å 0.71073 Å 

Crystal system  rhombohedral rhombohedral 

Space group  R 3 m R 3 m 

Unit cell dimensions a = 12.5161(18) Å a = 12.5398(18) Å 

 c = 7.8263(16) Å 
 = 120  

c = 7.8481(16) Å 
 = 120  

Volume 1061.8(3) Å3 1068.8(3) Å3 

Z 12 12 

Absorption coefficient 14.320 mm-1 14.226 mm-1 

F(000) 972 972 
Theta range for data 
collection 3.21 to 28.12°. 3.20 to 28.06°. 

Index ranges 
-16  h  15,  
-16  k  12,  
-10  l  9 

-16  h  9,  
-15  k  16,  
-10  l  9 

Reflections collected 2281 2279 

Independent reflections 330 [R(int) = 0.0801] 332 [R(int) = 0.0507] 
Completeness to theta = 
28.25 98.5 %  99.1 %  

Refinement method Full-matrix least-squares 
on F2 

Full-matrix least-squares 
on F2 

Data / restraints / 
parameters 330 / 0 / 32 332 / 0 / 32 

Goodness-of-fit on F2 1.379 1.354 
Final R indices 
[I>2sigma(I)] 

R1 = 0.0590,  
wR2 = 0.1105 

R1 = 0.0427,  
wR2 = 0.0853 

R indices (all data) R1 = 0.0597,  
wR2 = 0.1107 

R1 = 0.0433,  
wR2 = 0.0855 

Extinction coefficient 0.00072(10) 0.00074(8) 
Largest diff. peak and 
hole 1.425 and -2.125 e Å-3 1.479 and -1.496 e Å-3 
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Empirical formula  Cr0.58(11)Fe0.42(11)Ga Cr0.67(11)Fe0.33(11)Ga 

Temperature  293(2) K 293(2) K 

Wavelength  0.71073 Å 0.71073 Å 

Crystal system  rhombohedral rhombohedral 

Space group  R 3 m R 3 m 

Unit cell dimensions a = 12.5527(9) Å a = 12.5595(18) Å 

 c = 7.8581(13) Å 
 = 120  

c = 7.8550(16) Å 
 = 120  

Volume 1072.3(2) Å3 1073.1(3) Å3 

Z 12 12 

Absorption coefficient 14.179 mm-1 14.169 mm-1 

F(000) 972 972 
Theta range for data 
collection 3.20 to 28.08°. 3.20 to 28.20°. 

Index ranges 
-15  h  15,  
-15  k  15,  
-10  l  10 

-10  h  16,  
-16  k  10,  
-10  l  10 

Reflections collected 2960 2242 

Independent reflections 314 [R(int) = 0.0666] 330 [R(int) = 0.1119] 
Completeness to theta = 
28.25 93.5 %  97.9 %  

Refinement method Full-matrix least-squares 
on F2 

Full-matrix least-squares 
on F2 

Data / restraints / 
parameters 314 / 0 / 31 330 / 0 / 32 

Goodness-of-fit on F2 0.713 1.284 
Final R indices 
[I>2sigma(I)] 

R1 = 0.0305,  
wR2 = 0.0917 

R1 = 0.0502,  
wR2 = 0.1168 

R indices (all data) R1 = 0.0305,  
wR2 = 0.0917 

R1 = 0.0502,  
wR2 = 0.1168 

Extinction coefficient 0.00154(16) 0.0032(3) 
Largest diff. peak and 
hole 1.017 and -1.537 e.Å-3 2.074 and -1.524 e Å-3 
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Empirical formula  Cr0.47(11)Fe0.53(11)Ga Cr0.33(14)Fe0.67(14)Ga 

Temperature  293(2) K 293(2) K 

Wavelength  0.71073 Å 0.71073 Å 

Crystal system  rhombohedral rhombohedral 

Space group  R 3 m R 3 m 

Unit cell dimensions a = 12.5743(18) Å a = 12.6153(18) Å 

 c = 7.8717(16) Å 
 = 120  

c = 7.8833(16) Å 
 = 120  

Volume 1077.9(3) Å3 1086.5(3) Å3 

Z 12 12 

Absorption coefficient 14.106 mm-1 13.993 mm-1 

F(000) 972 972 
Theta range for data 
collection 3.19 to 28.25°. 3.19 to 28.25°. 

Index ranges 
-15  h  15,  
-16  k  14,  
-10  l  10 

-16  h  16,  
-16  k  16,  
-4  l  10 

Reflections collected 2294 2288 

Independent reflections 334 [R(int) = 0.0577] 331 [R(int) = 0.0401] 
Completeness to theta = 
28.25 98.5 %  97.1 %  

Refinement method Full-matrix least-squares 
on F2 

Full-matrix least-squares 
on F2 

Data / restraints / 
parameters 334 / 0 / 31 331 / 0 / 30 

Goodness-of-fit on F2 1.378 1.457 
Final R indices 
[I>2sigma(I)] 

R1 = 0.0378,  
wR2 = 0.0788 

R1 = 0.0711,  
wR2 = 0.1305 

R indices (all data) R1 = 0.0378,  
wR2 = 0.0788 

R1 = 0.0712,  
wR2 = 0.1305 

Extinction coefficient 0.00139(11) 0.00066(11) 
Largest diff. peak and 
hole 1.253 and -1.395 e. Å-3 2.531 and -2.525 e Å-3 
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Empirical formula  Cr0.81(11)Fe0.19(11)Ga 

Temperature  293(2) K 

Wavelength  0.71073 Å 

Crystal system  rhombohedral 

Space group  R 3 m 

Unit cell dimensions a = 12.6431(18) Å 

 c = 7.8985(16) Å 
 = 120  

Volume 1093.4(3) Å3 

Z 12 

Absorption coefficient 13.905 mm-1 

F(000) 972 

Theta range for data collection 3.18 to 28.25°. 

Index ranges -16  h  15, -16  k  16, -10  l  6 

Reflections collected 2298 

Independent reflections 336 [R(int) = 0.0667] 

Completeness to theta = 28.25 98.0 %  

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 336 / 0 / 30 

Goodness-of-fit on F2 1.438 

Final R indices [I>2sigma(I)] R1 = 0.0400, wR2 = 0.0860 

R indices (all data) R1 = 0.0400, wR2 = 0.0860 

Extinction coefficient 0.00233(16) 

Largest diff. peak and hole 1.265 and -1.934 e.Å-3 
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Supplement table 2.   Anisotropic displacement parameters  (Å2 103) for CrxFe1-

xGa.  The anisotropic displacement factor exponent takes the form:  -2 2[ h2 
a*2U11 + ...  + 2 h k a* b* U12 ] 
 

 U11 U22 U33 U23 U13 U12 

Loaded:  Cr0.1Fe0.9Ga                Refined:  Cr0.06(0)Fe0.94(0)Ga 

Ga1 7(1)  7(1) 5(2)  0 0  4(1) 

Ga2 6(1)  12(1) 7(1)  0(1) 0(1)  3(1) 

Ga3 8(1)  8(1) 7(1)  -1(1) 1(1)  5(1) 

M1 4(1)  4(1) 4(2)  0 0 2(1) 

M2 7(1)  6(1) 3(1)  0(1) 0(1)  3(1) 

M3 7(1)  7(1) 3(1)  0(1) 0(1)  2(1) 

Loaded:  Cr0.2Fe0.8Ga                Refined:  Cr0.24(23)Fe0.76(23)Ga 

Ga1 9(2)  9(2) 4(2)  0 0 5(1) 

Ga2 4(1)  10(1) 5(1)  0(1) 0(1)  2(1) 

Ga3 6(1)  6(1) 6(1)  -1(1) 1(1)  4(1) 

M1 2(2)  2(2) 0(3)  0 0 1(1) 

M2 4(2)  4(1) 2(1)  0(1) 0(1)  2(1) 

M3 4(1)  4(1) 1(1)  0(1) 0(1)  0(1) 

Loaded:  Cr0.3Fe0.7Ga                Refined:  Cr0.25(16)Fe0.75(16)Ga 

Ga1 7(1)  7(1) 6(2)  0 0  3(1) 

Ga2 5(1)  11(1) 8(1)  0(1) 0(1)  2(1) 

Ga3 7(1)  7(1) 10(1)  -1(1) 1(1)  4(1) 

M1 1(3)  1(3) 7(4)  0 0 1(1) 

M2 7(2)  6(1) 7(2)  0(1) 0(1)  3(1) 

M3 6(1)  6(1) 9(2)  0(1) 0(1)  2(1) 

Loaded:  Cr0.4Fe0.6Ga                Refined:  Cr0.50(12)Fe0.50(12)Ga 

Ga1 8(1)  8(1) 10(2)  0 0  4(1) 

Ga2 5(1)  13(1) 8(1)  0(1) 0(1)  3(1) 

Ga3 8(1)  8(1) 10(1)  -1(1) 1(1)  5(1) 

M1 3(2)  3(2) 4(3)  0 0 2(1) 

M2 6(1)  6(1) 6(1)  0(1) 0(1)  3(1) 
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M3 6(1)  6(1) 5(1)  0(1) 0(1)  2(1) 

Loaded:  Cr0.6Fe0.4Ga                Refined:  Cr0.65(14)Fe0.35(14)Ga 

Ga1 10(1)  10(1) 7(2)  0 0  5(1) 

Ga2 4(1)  11(1) 7(1)  0(1) 0(1)  2(1) 

Ga3 7(1)  7(1) 8(1)  -1(1) 1(1)  4(1) 

M1 2(2)  2(2) 5(3)  0 0 1(1) 

M2 6(1)  5(1) 6(1)  0(1) 1(1)  3(1) 

M3 5(1)  5(1) 6(1)  0(1) 0(1)  2(1) 

Loaded:  Cr0.7Fe0.3Ga                Refined:  Cr0.47(11)Fe0.53(11)Ga 

Ga1 5(1)  5(1) 8(1)  0 0  3(1) 

Ga2 3(1)  11(1) 8(1)  0(1) 0(1)  1(1) 

Ga3 5(1)  5(1) 10(1)  -1(1) 1(1)  3(1) 

M1 5(1)  5(1) 8(2)  0 0 3(1) 

M2 4(1)  3(1) 6(1)  0(1) 0(1)  2(1) 

M3 4(1)  4(1) 5(1)  0(1) 0(1)  1(1) 

Loaded:  Cr0.8Fe0.2Ga                Refined:  Cr0.33(14)Fe0.67(14)Ga 

Ga1 8(2)  8(2) 4(3)  0 0  4(1) 

Ga2 4(1)  15(1) 8(1)  0(1) 1(1)  2(1) 

Ga3 8(1)  8(1) 11(1)  -1(1) 1(1)  5(1) 

M1 3(2)  3(2) 5(4)  0 0 1(1) 

M2 5(2)  5(1) 6(2)  0(1) 0(1)  3(1) 

M3 5(2)  5(2) 6(2)  -1(1) 1(1)  2(1) 

Loaded:  Cr0.9Fe0.1Ga                Refined:  Cr0.81(11)Fe0.19(11)Ga 

Ga1 8(1)  8(1) 0(1)  0 0  4(1) 

Ga2 6(1)  15(1) 3(1)  0(1) 0(1)  3(1) 

Ga3 9(1)  9(1) 6(1)  -1(1) 1(1)  6(1) 

M1 4(1)  4(1) 0(2)  0 0 2(1) 

M2 6(1)  6(1) 2(1)  1(1) 2(1)  3(1) 

M3 6(1)  6(1) 1(1)  -1(1) 1(1)  2(1) 
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CHAPTER 4 

Between Hume-Rothery and Polar Intermetallics: 

Ti3.2(1)Ni7.3(1)Ga4.5: A New G-Phase 

(manuscript in preparation for submission to Inorganic Chemistry) 

Hyunjin Ko, and Gordon J. Miller* 

*Department of Chemistry, Iowa State University and Ames Laboratory, Ames, Iowa 50011-3111, USA 

ABSTRACT 

A new Ti-Ni-Ga compound, Ti3.2(1)Ni7.3(1)Ga4.5, has been prepared in a Ga flux and 

structurally and electronically characterized.  The new compound adopts a coloring 

of the cubic Sc11Ir4-type (G-phase) structure, Pearson symbol cF120; a = 11.7075(14) 

Å, space group Fm 3 m(No. 225), Z = 4.  The new compound deviates from the face-

centered cubic “TiNi2Ga” Heusler-type compound by introducing ordered vacancies 

at some Ti positions and a different coloring of Ni and Ga atoms on the bcc network.  

The atomic positions also show relationships to cubic -brass structures, but is based 

upon a 2 2 2 super-cell of the bcc unit cell, and develop a three-dimensional network 

of vertex-sharing icosahedra.  Electronic structure calculations indicate that the 

chemical composition, atomic distribution, as well as structure are strongly influenced 

by a pseudogap in the electronic density of states curve.  This pseudogap separates 

bonding Ti (Ni, Ga) states from antibonding Ti (Ni, Ga) states.  In effect, such 

compounds represent a link between Hume-Rothery electron phases and polar 

intermetallics, both of which are controlled by the occupation of electronic states. 

Introduction
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Structure-composition-property relationships in intermetallic compounds are 

governed largely by their electronic structures, but chemically derived rules to help 

target intermetallics with specific chemical or physical features remain elusive.  

Many structures based on close packed arrangements of atoms rely on modifications 

of the free-electron model to explain their electronic structures; one set of examples is 

the Hume-Rothery electron compounds.  These densely packed intermetallics 

involve late transition metals and post-transition metals and adopt fcc, bcc, -brass, 

and hcp structures that follow their valence s and p electron concentrations.  On the 

other hand, polar intermetallics, e.g., BaAl4, involve combinations of active, 

electropositive metals (Ba) with electronegative metals (Al), which form complex 

two- or three-dimensional networks that indicate some degree of covalent bonding.  

The active metals donate some or all of their valence electrons to satisfy chemical 

bonding requirements in the electronegative metal network.  In both types of 

intermetallics, the electronic density of states (DOS) curves typically show a 

pseudogap at the Fermi level.  In the cubic -brass phases, the origin of the 

pseudogap is the ordering of vacancies in a 3 3 3 super-cell of bcc atomic packing 

that is further enhanced by both slight atomic displacements around each vacancy as 

well as atomic distributions in these binary alloys.  On the other hand, in polar 

intermetallics, the pseudogap arises from a tendency to optimize bonding interactions 

within the electronegative metal network, which is dictated by orbital overlap and can 

also be modified by the atomic distributions.   

In this work, we report a cubic, icosahedral network in the new ternary 

compound Ti0.80(2)Ni1.83(2)Ga1.12, which shows relationships to both Hume-Rothery 

type -brasses as well as polar intermetallics.  This compound was prepared as part 

of an effort to explore the stability range and possible magnetic structures of mixed-
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metal gallides, (TxT 1 x)Ga, which are based on the isostructural series CrGa-MnGa-

FeGa.  Pseudobinary compounds (CrxFe1 x)Ga exist that are isostructural, and this 

new compound was discovered through attempts to prepare (TixNi1 x)Ga.  Upon 

successful preparation and characterization of this complex intermetallic, we further 

characterized this compound and the system by theoretical calculations.   

 

Experimental 

Synthesis.  The title compound was originally extracted and identified from a 

preparation of “TiNiGa2” and was subsequently obtained in high yield, as based on X-

ray powder diffraction, by loading “TiNi2Ga2” using elemental Ga (99.9999 %, ingots, 

Alfa Aesar), Ti (99.95 %, foil, Ames Laboratory), and Ni (99.99 %, wire, Ames 

Laboratory) in an evacuated ( < 10-4 torr) sealed silica tube.  The mixture was heated 

to 1373 K, and then slowly cooled to 1123 K at a rate of 1 K/min.  Following 48 

hours of annealing at 1123 K, the furnace was turned off and the final product was 

cooled down to room temperature.   

Chemical Analysis.  Chemical composition of the title compound was analyzed 

by Energy Dispersive Spectroscopy (EDS) using a JEOL 8400A scanning electron 

microscope, equipped with an IXRF Systems Iridium X-ray analyzer with Kevex

Quantum thin-window Si(Li) detector for quantitative chemical analysis; the resulting 

compositions complemented the results from refinements of single crystal X-ray 

analysis.  To acquire flat, microscopically smooth surfaces each sample was polished 

by sandpaper and fine leather, and subsequently inspected by back scattering and 

topological modes to determine the sites for elemental analysis.  Typical data 

collections utilized a 20 kV accelerating voltage and a 30 mA beam current.  To 
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carry out both quantitative and qualitative analyses, Ti, Ni, and Ga internal standards 

were used with the standardless method.  

X-ray Diffraction. XRD patterns of powdered samples were obtained with a 

Huber image plate using an Enraf Nonius Guinier camera and monochromatic Cu K 1 

radiation (  = 1.540598 Å) at ambient temperature (ca. 295 ± 2 K) and Si as an 

internal standard.  Powdered samples were homogeneously dispersed on a Mylar 

film with the aid of a little petroleum jelly.  The step size was set at 0.02o and the 

exposure time was 1 hr. for 2  values ranging from 10º to 95º.  Data acquisition was 

controlled via the in-situ program.  A major phase was identified to adopt a cubic 

lattice, space group Fm 3 m, with the occurrence of additional peaks assigned to 

elemental Ga.  The lattice parameter, a = 11.7071(14) Å, was obtained from least 

squares refinement with the aid of a Rietveld refinement program.7   

Block-like crystals (typical crystal dimensions: 50 × 50 × 50 m3) suitable for 

structure determination were selected from the products and mounted on glass fibers. 

Data were collected using a STOE IPDS2 (image plate diffraction system) 

diffractometer at 295 ± 2 K with monochromated Mo K 1 radiation (  = 0.71073 Å; 

50 kV and 40 mA) and a detector-to-crystal distance of 100 mm.  Diffraction data 

were collected in the full sphere of reciprocal space for an exposure time of 3 min per 

frame up to 2  = 58.12o.  Intensities were extracted and then corrected for Lorentz 

and polarization effects using the SAINT program.8  The program SADABS was 

used for empirical absorption correction.10  Structure refinements (full-matrix least-

squares on F2) were performed by using the SHELXTL-PLUS programs.22  The 

refinement results are summarized in Tables 1 and 2.  

Magnetic Studies.  Temperature-dependent magnetic susceptibility measurements 
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Table  1.  Crystal data and structure refinements of the single crystal. 
 
composition Ti0.86(2)Ni1.95(2)Ga1.2 

space group (Pearson symbol) Fm 3 m 

lattice parameters, Å a = 11.7075(14) 

volume, Å3 1604.7(3) 

Z 4 

Diffractometer; wavelength, Å  STOE-IPDS; 0.71073 (Mo K  radiation) 

2  range 6.02 to 58.12°. 

index ranges 0  h  10, 0  k  11, 1  l 6 

independent reflections 144 [R(int) = 0.0225] 

completeness to 2 max 100.0 % 

data/parameters 144 / 17 

goodness-of-fit on F2 1.127 

final R indices [I/ (I) > 2] R1 = 0.0445, wR2 = 0.1035 

R indices (all data) R1 = 0.0607, wR2 = 0.1077 

extinction coefficient 0.00069(13) 

largest diff. peak/hole, e/Å3 1.259 / -1.566 
 
 
Table  2.   Atomic parameters and isotropic temperature factors (Å2) for the 
Ti0.80(2)Ni1.83(2)Ga1.12  phase. 
 

atom Wyck.  occup. x y z Ueq. 

Ga1 4a  1 0 0 0 0.0024(1) 

Ga2 32f  1 0.1504(1) 0.1504(1) 0.1504(1) 0.0025(1) 

Ni1 24d  1 0 1/4 1/4 0.0022(1) 

Ni2 32f  1 0.1212(1) 0.1212(1) 0.3789(1) 0.0017(1) 

Ti1 24e  1 0 0 0.2215(4) 0.0022(1) 

M3 4b Ni3 0.6(1) 1/2 1/2 1/2 0.0018(2) 

 4b Ti3 0.4(1) 1/2 1/2 1/2 0.0018(2) 
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were conducted using a Quantum Design, MPMS-5 SQUID magnetometer. The 

measured temperature range was 1.8 K-300 K with a magnetic field range of 0.1-5.5 

T. Magnetic measurements were carried out on bulk samples (approximately 300 mg) 

from the same preparations as the one used for powder diffraction experiments.  The 

measurement yielded Pauli-paramagnetic behavior. 

Electronic Structure Calculations.  The theoretical electronic structures of model 

and actual Ti0.80(2)Ni1.83(2)Ga1.12 and related structures were calculated self-consistently 

by the tight-binding linear muffin-tin-orbital (TB-LMTO) method9,11-12 within the 

atomic sphere approximation (ASA) using the STUTTGART program.23  Exchange 

and correlation were treated in a local spin density approximation (LSDA).13  All 

relativistic effects except spin-orbit coupling were taken into account using a scalar 

relativistic approximation.14  Within the ASA, space is filled with overlapping 

Wigner-Seitz (WS) atomic spheres.  The radii of the WS spheres were obtained by 

requiring the overlapping potential to be the best possible approximation to the full 

potential according to an automatic procedure.15  The WS radii for the atomic sites 

determined by this procedure are 1.5058 Å for Ti, 1.3832 Å for Ni, and 1.5058 Å for 

Ga for all calculations.  The basis set included 4s, 4p, and 3d orbitals for Ti and Ni; 

4s and 4p orbitals for Ga.  The reciprocal space integrations to determine the self-

consistent charge densities, densities of states (DOS) and crystal orbital Hamilton 

populations (COHP)16 were performed by the tetrahedron method17 using 897 k-

points for TiNi2Ga and 145 k-points for a model structure (TiNi2.5Ga1.5) in the 

irreducible wedges of the corresponding Brillouin zones for the models.  

To study the site preference of metal atoms in Ti0.80(2)Ni1.83(2)Ga1.12-type 

structures, semi-empirical, Extended Hückel18,20-21 (EHT) calculations were 

performed.  In EHT, the atomic orbitals are expressed as Slater-type orbitals: single-
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zeta functions for Ga; and double-zeta functions for Ti and Ni.  All atomic orbital 

overlaps are calculated within two nearest neighbor cells in each independent 

crystallographic direction.  Diagonal Hamiltonian matrix elements are given by 

valence state orbital energies derived from atomic spectra; off-diagonal Hamiltonian 

matrix elements are approximated by the weighted Wolfsberg-Helmholz 

approximation.19  Integrated quantities, e.g., band energies and Mulliken populations 

at each site were obtained using a special point set of 483 k-points in the irreducible 

wedge of the first Brillouin zone.  

 

Results and Discussion 

Ti0.80(2)Ni1.83(2)Ga1.12 crystallizes in the cubic Sc11Ir4-structure type, Pearson 

symbol cP120, which has 8 formula units per unit cell, so we can also formulate the 

compound as Ti3.2(1)Ni7.3(1)Ga4.5.  This structure is face-centered cubic, space group 

Fm 3 m (No. 225), with six atomic positions in the asymmetric unit.  The optimal 

refinement yields segregation of Ti, Ni, and Ga atoms on all but one site in the 

asymmetric unit.  A summary of crystallographic data, atomic positions, site 

occupancy factors and temperature displacements factors, as well as significant 

interatomic distances are listed in Tables 1-4.  According to this refinement, and 

keeps in mind the Sc11Ir4-type description, gives a re-formulation as 

(Ti3Ni4Ga4)[Ti0.2Ni3.3Ga0.5]. 

The structure of Ti3.2(1)Ni7.3(1)Ga4.5, illustrated in Figure 1, is isopointal to that 

of Sc11Ir4, but the structural framework is distinct because Ni atoms preferentially 

occupy the Ir site, while the Sc site are nearly uniformly distributed by Ti, Ni, and Ga.  

Two alternative structural prototypes include the Th6Mn23- or MgCu16Si7-types: the Ti 
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Table  3.   Selected interatomic distances. 
 

atoms distance, Å atoms distance, Å 

Ga1 – Ga2 3.049(1) Ni1 – Ni2 2.562(1) 

      Ti1 2.594(5)      Ti1 2.946(1) 

Ga2 – Ni1 2.413(1) Ni2 – Ni2 2.837(3) 

      Ni2 2.719(2)      Ti1 2.723(3) 

      Ti1 2.625(2)      M3 2.457(2) 
 
 
Table  4.  Anisotropic displacement parameters  (Å

2
) for Ti0.80(2)Ni1.83(2)Ga1.12.  The 

anisotropic displacement factor exponent takes the form:  -2
2
[ h

2
 a*

2
U

11
 + ...  + 2 h k 

a* b* U
12

 ] 
 

 U11 U22 U33 U23 U13 U12 

Ga1 0.0024(1) 0.0024(1) 0.0024(1) 0 0 0 

Ga2 0.0025(1) 0.0025(1) 0.0025(1) 0.004(1) 0.004(1) 0.004(1) 

Ni1 0.0019(1) 0.0023(1) 0.0023(1) -0.001(1) 0 0 

Ni2 0.0017(1) 0.0017(1) 0.0017(1) 0.000(1) 0.000(1) 0.000(1) 

Ti1 0.0022(1) 0.0022(1) 0.0024(2) 0 0 0 

M3 0.0018(2) 0.0018(2) 0.0018(2) 0 0 0 
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atoms occupy solely the Th or Mg positions while the Ni and Ga atoms are distributed 

among the Mn or Cu/Si sites.  In these types, however, one special position (0,0,0) is 

vacant, but filled with Ga in Ti3.2(1)Ni7.3(1)Ga4.5.   

From a different perspective, this structure involves a network consisting of 

three basic building blocks: octahedra, cubes, and icosahedra.  To achieve this, we 

start with the bcc-based Heusler phase structure for TiNi2Ga,6 as highlighted in Figure 

2, which illustrates the local coordination around each atom for these two 

arrangements.  Cubic and octahedral environments are found in both TiNi2Ga as 

well as in Ti0.80(2)Ni1.83(2)Ga1.12.  Based on the Heusler phase aristotype TiNi2Ga, the 

observed phase can be formulated as (Ti0.75 0.25)(NiGa)(Ti0.05Ni0.825Ga0.125).  From 

this there are three significant modifications: (1) there are vacancies at 25% of the Ti 

sites in an ordered fashion.  In the observed unit cell, these vacancies are located at 

the 8c sites (1/4,1/4,1/4).  These Ti sites and vacancies sit at the center of a Ni cube.  

(2) these vacancies trigger the substitution of electron-rich Ga atoms to replace one-

half of the Ni atoms in the cubic arrangement resulting in two distinct tetrahedra, one 

by Ga and the other by Ni atoms.  (3) The Ga site is almost replaced by Ni atoms, 

with some occupation by Ti atoms, as well.  The vacancy and subsequent reassembly 

of polyhedra leads to nearly icosahedral local symmetry at the Ni1 sites.  Each of 

these icosahedra is connected throughout the lattice by 4 Ga1 centered octahedra and 

4 M1 centered cubes sharing edges with the distorted icosahedra making a cube (see 

Figure 1).  The Ga1 position is coordinated by 6 Ti atoms at 2.595 Å in an 

octahedron and 8 Ni3 atoms in a cube at 2.467 Å.  With one exception, the one 

between M3(Ni/Ti) and 8 Ni2 sites in cubic coordination, most of the interactions 

comprising the distorted icosahedron account for the shortest distances within the 

crystal structure, some of which include Ga1-Ti2 at 2.595(5) Å, Ga2-Ti2 at 2.625(2) 
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Å, Ga2-Ni2 at 2.413(1) Å and Ni2-Ni3 at 2.5619(9) Å.   

The distorted defect structure also resembles that of the cubic -brass 

structure.  As shown in Figure 3, the 26-atom, ‘ -brass cluster’ can also be extracted 

from Ti0.80(2)Ni1.83(2)Ga1.12.  These clusters consist of an inner tetrahedron of Ga 

atoms, an outer tetrahedron of Ni atoms, an octahedron by Ni atoms surrounding these 

tetrahedra, and, finally, a cuboctahedron of Ti atoms encapsulating all polyhedra.  

The difference between the cubic -brass structures, e.g. Cu5Zn8, and the cubic 

Ti0.80(2)Ni1.83(2)Ga1.12 comes from the assembly of these building blocks.  In -brass, 

these 26-atoms clusters are packed in a body-centered array, and face each other via 

the eight triangular faces of the cuboctahedron.  As a result, four face-sharing 

icosahedra, centered by atoms at the outer tetrahedron, come together to form the 

tetrahedral poly-cluster along {111} directions, as illustrated in Figure 3.  On the 

other hand, in Ti0.80(2)Ni1.83(2)Ga1.12, the same cluster units are assembled by sharing 

the six rectangular faces with each other along {100} directions to build a face-

sharing octahedron of icosahedra, also shown in Figure 3. 

Another relationship to the cubic -brass structure is evident in the ordered 

arrangement of vacancies at the Ti sites.  -brass is a distortion of a 3 3 3 supercell 

of bcc packing that has vacancies located at the corners and center of the unit cell (2 

vacancies for 54 positions).  From perspective of the Heusler alloy, 

Ti0.80(2)Ni1.83(2)Ga1.12 is a 2 2 2 supercell of this aristotype, or a 4 4 4 supercell of 

bcc packing.  As shown in Figure 4, if simple bcc or the CsCl-type structure is 

denoted as the 111  structure, then the TiNi2Ga Heusler phase could be viewed as 

a 2 2 2 superstructure with one additional coloring resulting in two types of 

interpenetrating cubic cells (TiGa) and (NiNi).  Similarly, the unit cell of the G-

phase Ti0.80(2)Ni1.83(2)Ga1.12 contains eight 2 2 2 supercells built of two types of 
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distorted bcc subcells in an alternating manner: (i) Ni[Ti3.4 Ni3.6]1/8 and (ii) 

Ga[Ti3 Ni3Ga]1/8.  To complete the unit cell, 4 sets of each of these 2 2 2 

supercells are assembled together in an alternating pattern resulting in a face centered 

cubic lattice with a 4 4 4 supercell of bcc packing.  The vacancies, therefore, 

actually distribute to give a 2 2 2 supercell of bcc packing before atomic 

displacements and distributions create the network of icosahedra, cubes, and 

octahedra and the ultimate 4 4 4 supercell.  TmRuGa3 is a recent example of a 

structure that follows this 2 2 2 supercell created by vacancies in bcc packing.24  

The nature of the distortion and atomic distributions were examined by first 

principles and semi-empirical calculations on a variety of model undistorted and 

distorted structures.  For the experimentally refined Ti0.80(2)Ni1.83(2)Ga1.12 compound, 

the model structure Ti0.75Ni1.875Ga1.125 with fully occupied Ni in the 4b site was used.  

Total DOS and COHP curves for various interatomic interactions obtained from TB-

LMTO-ASA calculations are illustrated in Figure 5.  Calculations based on the 

LSDA were also explored, but converged to the same solution as obtained by LDA, so 

we continued with just LDA.  This conclusion, nevertheless, agrees with Pauli 

paramagnetism obtained from magnetic susceptibility measurements. 

As expected from the structural similarities in the defect structure with the -

brass structure, Ti0.75Ni1.875Ga1.125 can also be viewed as an electronically stabilized 

Hume-Rothery phase.  The DOS in Figure 5 shows that the Fermi energy falls in a 

sharp yet narrow pseudogap, which is the evident feature in icosahedral Hume-

Rothery phases. 

The corresponding COHP analysis reveals a complex interplay of metal-

metal interactions at the Fermi level that certificate to this observation.  Before 

describing these points, we focus on the electronic structure of the Heusler alloy 
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Figure  6.    COHP curves for (1) Ti0.75Ni1.875Ga1.125 and (2) TiNi2Ga.  The 
calculated Fermi energy is plotted as the dotted line, where the refined valence electron 
count is plotted as a solid line.  Weighed total COHP curves are shown for both 
structures (left).  For TiNi2Ga, the interactions between Ni–Ti (blue) and M–Ga (M = 
Ni; yellow, Ti; green) exhibit bonding characteristics, and Ni–Ni interactions at 2.940Å 
(red) shows antibonding characteristic at the Fermi energy.  For Ti0.75Ni1.875Ga1.125, the 
Ni–Ni interaction at 2.456 Å lies in a pseudogap at the Fermi level.  The Ga–Ti 
interactions making octahedron at 2.595Å (green) and 2.627Å (blue) both have bonding 
characteristic at the Fermi level, and Ti–Ni interaction at 3.259Å (pink) shows 
nonbonding characteristic.  Both Ga–Ni at 2.412Å (green) and Ni–Ti at 2.946Å (blue) 
show bonding characteristic at the Fermi level.  The Ni – Ni at 2.562Å (red) crosses 
over from antibonding to nonbonding at the Fermi level. 
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TiNi2Ga, also shown in Figure 5.  The Fermi level (27 electrons) lies in a ca. 1.8 eV 

band containing 2 crystal orbitals.  The COHP analysis indicates the Fermi level falls 

among Ni-Ni antibonding interactions, but Ti-Ni and Ni-Ga weak bonding 

interactions.  The DOS at the Fermi level is a peak; by lowering the valence electron 

count, this level can move to a minimum, i.e., a pseudogap.  There is a clear 

pseudogap at 24 valence electrons, but this drop is electron count would deplete a 

significant number of metal-metal bonding state.   

For Ti0.75Ni1.875Ga1.125, the district pseudogap for 168 electrons, which is the 

“equivalent” of 24 electrons in TiNi2Ga is missing.  Nevertheless, there is a sharp 

pseudogap at the Fermi level for electron count close to 200 valence electrons.  The 

model Ti0.75Ni1.875Ga1.125 contains 201 electrons; the observed composition 

Ti0.75Ni1.875Ga1.125 has 198.6 electrons.  The COHP analysis, though showing no 

clear crossover from bonding to antibonding states at the pseudogap, does involve a 

combination of antibonding Ni-Ni and weak bonding Ti-Ni and Ti-Ga interactions. 

 

Conclusion

A new intermediate compound bridging the Heusler phase with the -brass phase is 

prepared in a Ga flux and its crystal structure was characterized.  From the COHP 

analysis, structural flexibilities towards more electron deficient composition 

suggested the possibility of larger distortion and/or mixing.  This final distorted 

structure mimics the same building block in the -brass structure, and both structures' 

electronic studies showed the formation of the pseudogap at the Fermi level. 

 

Acknowledgements 

94



www.manaraa.com

This manuscript has been authored at Iowa State University of Science and 

Technology under Contract No. W-7405-ENG-82 with the U.S. Department of 

Energy.  The United States Government retains and the publisher, by accepting the 

article for publication, acknowledges that the United States Government retains a non-

exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the 

published form of this manuscript, or allow others to do so, for United States 

Government purposes. 

 

 

References 

[1] Bradley, A. J.; Rodgers, J. W., Proc. Royal Soc. London. A. (144) 852, 1934(3), 

340 

[2] Pavlyuk, V. V.; Dmytriv, G. S.; Chumak, I. V.; Ehrenberg, H.; Pauly, H., J.

Solid State Chem. 178, 2005, 3303 

[3] Fujiwara, J. Phys. Rev. B40, 1989, 942 

[4] Fujii, S.; Ishida, S.; Asano, S.; J. Phy. Soc. Japan, 1989, 58(10), 3657 

[5] Chabot B., Cenzual K., Parthe E., Acta Crystallogr. 1980, 36B, 7 

[6] Markiv, V. Ya.; Gladyshevskii, E. I. (Hladyshevskii, E. I.); Kuz’ma, Yu. B., 

Dopovidi Akademii Nauk Ukrains’koi RSR. 1962(10), 1329-1331  

[7]  Rietveld, H. M. J. Appl. Crystallogr. 1969, 2, 65 

[8]  SMART; Bruker AXS, Inc.; Madison, WI, 1996. 

[9]  Andersen, O. K.; Jepsen, O. Phys. Rev. Lett. 1984, 53, 2571.  

[10]  Blessing, R. H.: An empirical correction for absorption anisotropy. Acta. Cryst.. 

1995, A 51, 33. 

[11]  Andersen, O. K. Phys. Rev. 1975, B12, 3060.  

95



www.manaraa.com

[12]  Andersen, O. K.; Jepsen, O.; Glötzel, D. In Highlights of Condensed-Matter 

Theory; Bassani, F.; Fumi, F.; Tosi, M. P.; Lambrecht, W. R. L.; Eds.; North-

Holland: New York, 1985. 

[13]  Von Barth, U.; Hedin, L. J. Phys. C 1972, 5, 1629.  

[14]  Koelling, D. D.; Harmon, B.N. J. Phys. C 1977, 10, 3107. 

[15]  Jepsen, O.; Anderson, O. K. Z. Phys. B 1995, 97, 35. 

[16]  Dronskowski, R.; Blöchl, P. J. Phys. Chem. 1993, 97, 8617. 

[17]  Blöchl, P. E.; Jepsen, O.; Andersen, O.K. Phys Rev. 1994, B49, 16223.  

[18]  Hoffmann, R. J. Chem. Phys. 1963, 39, 1397-1412. 

[19]  Wolfsberg, M.; Helmholz, L. J. J. Chem. Phys. 1952, 20, 837. 

[20]  Dronskowski, R.; Blöchl, P. J. Phys. Chem. 1993, 97, 8617. 

[21]  Blöchl, P. E.; Jepsen, O.; Andersen, O.K. Phys Rev. 1994, B49, 16223.  

[22]  SHELXTL; Brucker AXS, Inc.; Madison, WI, 1996. 

[23]  The Stuttgart Tight-Binding LMTO-ASA program Version 4.7; Max-Planck-

Institut für Festkörperforschung, Stuttgart, Germany 1998. 

[24]  Sichevich, O. M.; Bruskov, V. A.; Grin, Y. Kristallografiya. 1989, 34(6), 1571. 

96



www.manaraa.com

CHAPTER 5 
 

Structural and Compositional Studies of the Flux-Grown 

RENi1 xGe3 Series 

(RE = Ce-Nd, Sm, Gd-Lu; Y) 
 

(manuscript in preparation for submission to Inorganic Chemistry) 

 

Hyunjin Ko,# E. D. Mun,% Sergey L. Bud’ko,& P. C. Canfield,&  
and Gordon J. Miller#* 

 

# Department of Chemistry, Iowa State University and Ames Laboratory, Ames, Iowa 50011-3111,  

% Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011-3111 

& Department of Physics and Astronomy, Iowa State University and Ames Laboratory, 

Ames, Iowa 50011-3111 

ABSTRACT 

Flux-grown single crystals of the RENi1 xGe3 family (RE = Ce-Nd, Sm, Gd-Er, Yb-

Lu; Y) have been characterized by powder and single crystal X-Ray diffraction 

methods to determine trends in crystal structures and refined chemical compositions 

as part of a complete study of their magneto-structural relationships.  Most 

RENi1 xGe3 examples (RE = Ce-Nd, Sm, Gd-Er; Y) adopt the orthorhombic 

SmNiGe3-type structure, space group Cmmm, with lattice parameters decreasing 

essentially linearly along the sequence of rare-earth elements from CeNiGe3 to 

ErNi0.61Ge3.  YbNiGe3 crystallizes in a new structure, which forms a tetragonal 

lattice, space group I41/amd with lattice parameters a = 4.0347(6) Å, c = 43.211(9) Å.  

LuNiGe3 also adopts a new structure type, which is distorted from the orthorhombic 

crystal class of the SmNi1 xGe3-type structures.  This new structure type is 
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monoclinic, space group C2/m with lattice parameters a = 7.8521(16) Å, b = 

7.9384(16) Å, c = 10.700(2) Å, and  = 100.530(3) .  On proceeding left to right 

along the Lanthanide series, deficiencies at the Ni site of RENiGe3 increase up to the 

Er compound followed by lattice distortions.  Possible electronic driving forces for 

these vacancies were investigated by first principles, tight-binding calculations of the 

electronic structures. 

 

Introduction 

Ternary intermetallic materials that specifically contain a combination of a 

rare-earth element, a 3d transition metal, and a tetrelide element, i.e., Si, Ge, or Sn, 

are attracting attention of condensed matter physicists and solid-state chemists 

because this compound class exhibits various technologically advantageous physical 

properties such as heavy fermion behavior and superconductivity, as well as numerous 

magnetic ordering patterns1-3 that provide opportunities to better understand 

interatomic exchange interactions such as Kondo4 and RKKY interactions5.  A 

crucial part of this research activity is the development of flux-growth strategies to 

prepare single crystals suitable for both property measurements and structural 

characterizations.  Such samples allow thorough determination of structure-

composition-property relationships in these phases.  Another issue is to design 

structures in which the rare-earth metal occupies an uniaxial environment so that 

magnetic anisotropy can be easily investigated by oriented single crystals.  With 

these concepts in mind, we have carried out a systematic study of the RETGe3 class of 

phases (RE = rare-earth metal; T = group VIIIA transition metal). 

RETGe3 intermetallic compounds are reported to crystallize exclusively in one 

of three structural families: (1) the cubic Yb3Rh4Sn13-type6 (space group 3Pm n ); (2) 
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tetragonal BaNiSn3-type7 (space group I4mm); or (3) orthorhombic SmNiGe3-type8 

(space group Cmmm).  Specific examples in the cubic class include the LaTGe3 

series (T = Co, Rh, Ir;9 Ru, Os), and tetragonal examples include NdCoGe3
10, CeTGe3 

(T = Fe, Co),11 and EuCoGe3.12  To our knowledge, however, systematic structural 

investigations of single crystalline samples of orthorhombic, SmNiGe3-type RENiGe3 

compounds have not been reported.  The RENiGe3 series was initially grown in a 

germanium flux to explore the magnetic properties of rare-earth elements in locally 

orthorhombic environments.13  Herein, we report the detailed crystal structures of 

flux-grown single crystals of RENiGe3 (RE = Y, Ce-Nd, Sm, Gd-Er), and the 

theoretical electronic structure studies of CeNiGe3 and ErNiGe3 to understand the 

refined Ni contents, which tend to decrease along the series, i.e., the series should be 

formulated as RENi1 xGe3.  During the course of our investigations, we have 

identified two new structures in the Yb and Lu cases: a tetragonal YbNi1.04(6)Ge2.89(5) 

and a monoclinic LuNi0.41(4)Ge3.07(4). 

 

Experimental 

Synthesis.  The series of RENi1 xGe3 compounds (RE = Y, Ce-Nd, Sm, Gd-Lu) was 

prepared via a flux-growth method using excess Ge as the flux by mixing the pure 

elements, RE, Ni, and Ge in a 1:1.6:9 molar ratio, respectively, and heating to 1323 K 

in an alumina crucible.  Crystalline specimens are centrifuged from the flux at 

elevated temperatures, and subsequently treated with nitric acid and rinsed in an 

ultrasonic bath to remove excess flux.  The resulting samples are not reactive when 

exposed to air or moisture.  These procedures successfully yielded crystalline 

samples for further physical and structural characterization.  “EuNiGe3” was targeted 

using the same synthetic procedure without yielding suitable products for further 
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characterization.  Detailed synthetic procedures for the entire series are reported in a 

separate paper.13 

Structural Analysis 

Powder X-Ray Diffraction.  Phase characterizations were performed on flux-grown 

samples by room-temperature, X-ray powder diffraction using a Rigaku MiniFlex 

diffractometer at room temperature with CuK  radiation (  = 1.540598 Å) with a Si 

standard.  The diffraction patterns were collected for 2  values ranging from 10º to 

100º at increments of 0.02º.  The lattice parameters were determined by the Rietveld 

profile fitting method14 using the Rietica refinement program.15 

Single Crystal X-Ray Diffraction.  From flux-grown, plate-like crystalline pieces, 

those with lustrous surfaces were isolated and several irregularly shaped crystals with 

average approximate dimensions of (100 m)3 were selected from crushed samples 

and mounted on glass fibers.  Room temperature X-ray diffraction intensities were 

recorded on a STOE-IPDS(II) (Image Plate Diffraction System) single crystal 

diffractometer with monochromated Mo K  radiation (  = 0.71073 Å, 50 kV and 40 

mA) and detector to crystal distance of 100 mm.    

 A numerical absorption correction was applied to the data using program X-

shape (STOE), which corrects symmetry equivalent reflections while optimizing a 

convex polyhedron for the crystal shape.  Due to the large linear absorption of the 

rare-earth elements, consideration of the differences in the path lengths of the 

symmetry equivalent reflections resulted in significant improvements of Rint for all 

crystalline specimens.  The structures were solved by direct methods and refined by 

full-matrix least squares against F2 for all reflections using the SHELXTL program 

suite16.  All refined parameters including anisotropic displacement parameters and 

site occupancies were simultaneously refined for all atoms, while the occupancy 
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parameter of the rare-earth atom was held constant.   

Chemical Analysis.  The chemical composition of RENi1 xGe3 samples were 

analyzed by Energy Dispersive Spectroscopy (EDS) using a JEOL 840A scanning 

electron microscope, equipped with an IXRF Systems Iridium X-ray analyzer with a 

Kevex Quantum thin-window Si(Li) detector for quantitative chemical analysis with 

the standardless method and a 20 kV accelerating voltage and a 30 mA beam current.  

The results showed no significant oxygen content.  

Electronic Structure Calculations.  To investigate issues of chemical bonding and 

possible electronic factors influencing vacancies of the Ni sites in the RENi1 xGe3 

series, electronic structures for CeNiGe3 and ErNiGe3 were calculated self-

consistently by the tight-binding linear muffin-tin-orbital (TB-LMTO) method17-20 

within the atomic sphere approximation (ASA) using the Stuttgart code: LMTO 

Version 47.   The local spin density approximation (LSDA)21 was used to treat 

exchange and correlation.  All relativistic effects except spin-orbit coupling were 

taken into account using a scalar relativistic approximation.22  The radii of the 

overlapping, space filling Wigner-Seitz (WS) atomic spheres were obtained by 

requiring the overlapping potential to be the best possible approximation to the full 

potential according to an automatic procedure.23  The WS radii for the atomic sites 

determined by this procedure are 2.501 Å for Ce, 2.411 Å for Er, 1.47-1.60 Å for Ge, 

and 1.38-1.49 Å for Ni.  The basis set included 4s and 4p orbitals for Ge; 4s, 4p and 

3d orbitals for Ni, and 6s, 6p and 5d orbitals for Ce and Er; the 6p orbitals were 

downfolded40 and the 4f electrons were treated as core electrons.  Reciprocal space 

integrations to determine the self-consistent charge densities, densities of states 

(DOS) and crystal orbital Hamilton populations (COHP)24 curves were performed on 

both structures by the tetrahedron method25 using 301 irreducible k-points within the 
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Figure  1. Views of the crystal structures of a) orthorhombic Cmmm RENiGe3 (RE = 
Y, Ce-Nd, Sm, Gd-Er) down the c-axis, b) tetragonal I41/amd YbNiGe3 down the a-
axis, and c) monoclinic C2/m LuNiGe3 down the b-axis.  Ge atoms are in red, Ni 
atoms are in blue, where the sites with mixed Ge/Ni occupancies are shown in purple, 
and the rare earth atoms are drawn in larger spheres. 
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orthorhombic Brillouin zones.  

Results and Discussion 

Systematic diffraction studies of the RENi1 xGe3 series resulted in three 

related structures as shown in Figure 1.  Moreover, Table 1 summarizes selected 

crystallographic and analytical data for these structures.  For most of the rare-earth 

metals, viz., RE = Ce-Nd, Sm, Gd-Er and Y, RENi1 xGe3 adopts an orthorhombic 

lattice, whereas YbNiGe3 adopts a tetragonal lattice, and LuNi1 xGe3 adopts a 

monoclinic lattice.  All structures have in common a three-dimensional network of 

Ni and Ge atoms consisting of zig-zag chains of Ge atoms and two-dimensional slabs 

of (distorted) square nets of Ni and Ge atoms.  The RE atoms surround the zig-zag 

chains and sit in the large cavities of the networks. Furthermore, compounds formed 

with the later rare-earth metals typically yield sub-stoichiometric content of Ni atoms, 

except in the Yb case.  In this regard, both chemical analysis from EDS 

measurements and refinements from single crystal XRD investigations agree; Table 1 

includes both results for comparison.  According to EDS studies, a “Ni3Ge4” phase 

frequently occurs as a by-product, in addition to Ge. 

Both PXRD and single crystal XRD studies led us to believe that the 

orthorhombic structure was adopted by TmNiGe3 compound; however, due to the 

poor crystallinity of the TmNiGe3 samples, no conclusive refinement of the single 

crystal structure was successively obtained.  During our investigation, we identified 

ErNiGe3 crystals adopting a monoclinic lattice resulting in an anomalous composition 

from single crystal X-Ray diffraction refinement process.  Consequently, for 

ErNiGe3 samples two separate batches were prepared to resolve the ambiguities in the 

possible lattice distortions.  Both orthorhombic as well as monoclinic solutions were 

104



www.manaraa.com

found resulting in two completely different refinement compositions.  This could not 

be clearly distinguished solely by powder X-Ray diffraction experiments due to the 

high noise level of the diffraction profiles.  The orthorhombic lattice parameters 

were refined as a = 3.9594(8) Å, b = 21.273(4) Å, and c = 4.0063(8) Å with 

ErNi0.61(3)Ge3, and the monoclinic lattice refinement gave rise to the unit cell with a = 

8.0044(16) Å, b = 7.9260(16) Å, c = 21.562(4) Å, and  = 100.67(3)°, space group 

C2/m, and a refined composition of ErNi1.53(1)Ge2.  The EDS analysis clearly 

indicates that this also belongs to the SmNiGe3 and crystallizes in the orthorhombic 

lattice since the composition of the system was confirmed to be ErNi0.60(2)Ge2.86(1).  

For detailed refinement parameters of the monoclinic phase, see Appendix 5.2. 

In addition, the anisotropic crystal topologies and the much longer b-axis unit 

cell parameters affected the anisotropic thermal displacement parameters throughout 

the series resulting in slightly elongated thermal ellipsoids.  After taking numerical 

absorption corrections, the degrees of elongation were decreased significantly.  As 

for the latter RENi1-xGe3 (RE = Ho, Dy, Er; Lu) with larger partial occupancies at the 

Ni sites, we observed possible superstructure formations resulting in satellite 

diffraction peaks positioned half-way between major reflections along (010) and (001) 

directions.  

1) RENiGe3 (RE = Ce-Nd, Sm, Gd-Er; Y) 

Diffraction symmetry and systematic absences confirm the Cmmm space 

group for the series of orthorhombic structures.  The refined lattice parameters and 

significant crystallographic data are listed in Table 1; atomic coordinates, site 

occupancies, and isotropic displacement parameters are summarized in Table 2.   

All of these RENiGe3 phases adopt the orthorhombic SmNiGe3-type structure.  The 
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Table  2.  Atomic coordinates and isotropic displacement parameters for RENiGe3

series.

atom site occup. x y z Ueq.
Y 4j 1 0 0.3314(1) 1/2 0.013(1) 

Ge1 4j 1 0 0.2162(1) 0 0.015(1) 
Ge2 4i 1 0 0.4429(1) 0 0.016(1) 
Ge3 4i 1 1/2 0.4430(1) 1/2 0.015(1) 
Ni 4i 0.922(12) 1/2 0.3897(1) 0 0.014(1) 
Ce 4j 1 0 0.3322(1) 1/2 0.009(1) 

Ge1 4j 1 0 0.0562(1) 1/2 0.013(1) 
Ge2 4i 1 0 0.2163(1) 0 0.011(1) 
Ge3 4i 1 0 0.4437(1) 0 0.013(1) 
Ni 4i 0.981(12) 0 0.1086(1) 0 0.011(1) 
Pr 4j 1 0 0.3320(1) 1/2 0.013(1) 

Ge1 4j 1 0 0.2162(1) 0 0.016(1) 
Ge2 4i 1 0 0.4436(1) 0 0.018(1) 
Ge3 4i 1 1/2 0.4437(1) 1/2 0.017(1) 
Ni 4i 0.979(11) 1/2 0.3912(1) 0 0.016(1) 
Nd 4j 1 0 0.3320(1) 1/2 0.017(1) 
Ge1 4j 1 0 0.2162(1) 0 0.019(1) 
Ge2 4i 1 0 0.4436(1) 0 0.021(1) 
Ge3 4i 1 1/2 0.4435(1) 1/2 0.020(1) 
Ni 4i 0.973(14) 1/2 0.3910(1) 0 0.019(1) 
Sm 4j 1 0 0.3317(1) 1/2 0.016(1) 
Ge1 4j 1 0 0.2163(1) 0 0.018(1) 
Ge2 4i 1 0 0.4432(1) 0 0.020(1) 
Ge3 4i 1 1/2 0.4432(1) 1/2 0.020(1) 
Ni 4i 0.926(12) 1/2 0.3905(1) 0 0.017(1) 
Gd 4j 1 0 0.1685(1) 1/2 0.011(1) 
Ge1 4j 1 0 0.2840(1) 0 0.014(1) 
Ge2 4i 1 0 0.0570(1) 0 0.017(1) 
Ge3 4i 1 1/2 0.0569(1) 1/2 0.016(1) 
Ni 4i 0.870 (10) 1/2 0.1097(1) 0 0.013(1) 
Tb 4j 1 0 0.3315(1) 1/2 0.016(1) 

Ge1 4j 1 0 0.0572(1) 1/2 0.022(1) 
Ge2 4i 1 0 0.2158(1) 0 0.021(1) 
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Ge3 4i 1 0 0.4427(1) 0 0.024(1) 
Ni 4i 0.860(16) 0 0.1101(1) 0 0.021(1) 
Dy 4j 1 0 0.3314(1) 1/2 0.014(1) 
Ge1 4j 1 0 0.2157(1) 0 0.019(1) 
Ge2 4i 1 0 0.4425(1) 0 0.022(1) 
Ge3 4i 1 1/2 0.4427(1) 1/2 0.020(1) 
Ni 4i 0.820(15) 1/2 0.3899(1) 0 0.018(1) 
Ho 4j 1 0 0.3314(1) 1/2 0.015(1) 
Ge1 4j 1 0 0.2154(1) 0 0.021(1) 
Ge2 4i 1 0 0.4423(1) 0 0.023(1) 
Ge3 4i 1 1/2 0.4426(1) 1/2 0.023(1) 
Ni 4i 0.772(15) 1/2 0.3898(1) 0 0.018(1) 
Er 4j 1 0 0.3314(1) 1/2 0.020(1) 

Ge1 4j 1 0 0.0581(2) 1/2 0.030(1) 
Ge2 4i 1 0 0.2137(2) 0 0.027(1) 
Ge3 4i 1 0 0.4416(2) 0 0.031(1) 
Ni 4i 0.61 0 0.1094(3) 0 0.021(2) 
Yb 8e 1 1/2 1/4 0.0409(1) 0.012(1) 
Ge1 8e 1 0 3/4 0.0169(1) 0.014(1) 
Ge2 8e 1 1/2 3/4 0.0967(1) 0.016(1) 
Ni1 8e 0.926(10) 0 3/4 0.0697(1) 0.014(1) 

M (Ni/Ge) 8e 0.11/0.89(5) 0 1/4 0.0965(1) 0.016(1) 
Lu 8j 1 0.0840(1) 0.2514(1) 0.3376(1) 0.009(1) 

Ge1 4i 1 0.0086(2) 0 0.1176(1) 0.011(1) 
Ge2 4i 0.959(11) 0.8578(2) 0 0.4129(2) 0.011(1) 
Ge3 4i 1 0.3544(2) 0 0.4368(1) 0.010(1) 
Ge4 4i 1 0.0505(2) 1/2 0.1188(1) 0.010(1) 
Ge5 8j 1 0.7795(1) 0.2308(1) 0.1173(1) 0.010(1) 

M (Ni/Ge) 4i 0.81/0.19(7) 0.3039(2) 0 0.2182(2) 0.010(1) 
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refined lattice parameters obtained by both powder and single crystal X-Ray 

diffraction experiments showed excellent agreement within the standard deviations.  

Proceeding from the larger to the smaller rare-earth systems, all lattice parameters 

nearly linearly decreased: ca. 4.3% for a-; ca. 4.0% for c-; and ca. 2.9% for the b-axis.  

Furthermore, the overall volume decreased by ca. 11%.  These results are consistent 

with the lanthanide contraction that occurs when adding electrons to the 4f orbitals, 

which ineffectively shield the nucleus and leads to a corresponding increase in the 

effective nuclear charge across the lanthanide series of elements.26 

Figure 2 shows the three two-dimensional structural building blocks and the 

construction sequence of these units along the b-axis that have been used to describe 

this type of structure38: (A) resembles the two-dimensional network on one side of 

the rare earth metals (Ba site) found in the tetragonal BaAl4-type27 structure; (B) 

follows the atomic arrangement found in the hexagonal AlB2-type28 structure; and 

(C) adopts the atomic arrangement of the -Po-type29 lattice.  In RENiGe3 phases, 

slab (A) is composed of Ge and Ni atoms in a puckered square network with RE-Ni 

distances of 3.1–3.2 Å and Ni-Ge distances of 2.25-2.3 Å.  Slab (B) contains rare-

earth atoms with Ge filling the trigonal prismatic holes with the following distances 

RE-RE ca. 4.0 Å, RE-Ge ca. 3.0 Å, and Ge-Ge ca. 2.6 Å.  Slab (C) is composed 

only of Ge atoms making a two-dimensional network with dGe-Ge ca. 2.5 Å and ca. 

2.8 Å.  The three slabs are assembled via condensation in a sequence …ABAC… 

along the b-axis.  As shown in the Figure 3, the rare earth – rare earth, rare earth – 

germanium, and germanium – germanium interatomic distances of are compatible 

with the average distances found in other intermetallic systems, whereas the 

interatomic distances with nickel atoms are slightly shorter than the distances found 

in other structures containing Ni and Ge atoms (e.g. dNi-Ge = 2.477Å in U3Ni6Ge2)30, 
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Figure  3.   Selected interatomic distances of orthorhombic RENiGe3 series (RE = 
Y, Ce-Nd, Sm, Gd-Er). 
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short distances in average covalent radii scale are highlighted in the gray area.  

The RE atoms are coordinated by 10 Ge atoms and 4 Ni atoms (CN = 14), as 

shown in Figure 4, in a distorted, intermetallic, based-capped hexagonal prism, 

which is frequently observed in rare-earth intermetallics, as in hexagonal GdPt2Sn39.  

These polyhedra share square faces along the a- and b- directions and hexagonal 

faces along the c- direction.  These hexagonal prisms are formed by 8 Ge atoms and 

4 Ni atoms with 4 additional Ge atoms capping the prismic squares of the polyhedra 

(Figure 3(b)).  

The close interatomic distances between germanium and nickel atoms could 

be explained by the occurrence of partial occupancies at the Ni site since the 

diffracted electron density represents the average value over many unit cells, and also 

the consequent enlargement of the thermal displacement parameters at the Ni site 

simultaneously contributed to give the shortened distances.  The changes in Ni site 

occupancies are summarized in Figure 5.  Increasing the Ni site vacancies on 

proceeding from left to right along the 4f series correlates with the chemical pressure 

provided by the lanthanide contraction.  In the RENi1-xGe3, the RE elements provide 

3 valence electrons, but the Ni atoms formally contribute 0 valence s and p electrons, 

if the 3d band is filled.  However, as the rare-earth elements varies, there are 

anticipated changes in RE-Ni and possible Ni-Ge interactions involving empty 5d 

bands at the rare-earth metal and nearly filled 3d bands at Ni.   

In the calculated DOS curve for CeNiGe3 shown in Figure 6(a), Ni 3d states 

dominate from –2.5 eV up to the Fermi level, whereas between –5 eV and –2.5 eV, Ni 

and Ge valence orbitals contribute evenly.  Below –5 eV states are almost 

exclusively from Ge 4p bands contributions.  The Ge 4s states are observed to make 

only a small contribution in the energy window shown although Ge-s states are often 
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observed to provide a broad occupied s band in many intermetallic systems.  The 

small contribution of the Ge 4s states is interpreted to be a result of the interaction 

between Ge 4s and Ni 4s states resulting in a shift of Ge 4s states to a lower energy 

region.41  The valence band within ca. 6 eV of the Fermi level is divided into two 

regions: (1) from –4.5 to –2.5 eV, there is strong mixing between Ni 3d and Ge 4p 

states; and (2) above -2.5 eV, there is predominantly Ni 3d bands.  In the ErNiGe3 

DOS curve, similar contributions are observed from Ni 3d and Ge 4p states.  

However, the major difference was found below the energy window of –6 eV.  In the 

Ce system, Ge 4p bands are divided into two contributions with one set located below 

–6.5 eV creating a gap in DOS curve.  The Er system was found to have all Ge 4p 

states delocalized below –12 eV to the Fermi level without creating any gap in DOS 

curve. 

In Figure 7, COHP curves of three Ni-Ge interactions in both CeNiGe3 (left) 

and ErNiGe3 (right) compounds are plotted.  In both cases, the Fermi level lies 

around the energy where the bonding-to-antibonding crossover occurs.   In the Ce 

system, the most noticeable crossover occurs for the Ge-Ge interaction at 2.455 Å 

within a 0.2 eV energy window at the Fermi level, but in the Er system, the Fermi 

level lies in the middle of a broad crossover energy window of almost 2 eV found in 

two Ge-Ge interactions at 2.465 and 2.503 Å.  This COHP crossover suggests that 

the structure of the compounds is trying to optimize these particular interactions by 

minimizing the occupation of antibonding states.   

 

2) RENiGe3 (RE = Yb, Lu) 

YbNiGe3 crystallizes in a new type of crystal structure, adopting a tetragonal 

crystal class, space group I41/amd, with lattice parameters a = 4.0347(6) Å, c = 
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Figure  6.   Density of States (DOS) of (a) CeNiGe3 and (b) ErNiGe3.  Black 
solid line represents the total DOS, Ge states in red, and Ni state in blue.  The Fermi 
level is set to zero. 
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43.211(9) Å, and yielded the refined composition of YbNi1.04(6)Ge2.89(5).  This 

structure is a different stacking scheme from the orthorhombic SmNiGe3-type 

resulting in a doubled b-axis as shown in Figure 8.  YbNiGe3 adopts the same 

fundamental building blocks found in the SmNiGe3-type structure.  Starting from 

this structure, half of the unit cell is rotated by 90  along the b-axis before completing 

the whole unit cell construction as shown in Figure 8.  Consequently, the resulting 

structure has …ADACABAC… sequence instead of the …ABACABAC… sequence.  

The new building block, slab (D), replaces 50% of the (B) slab, and is similar to slab 

(B) with one-half of it layer shifted to create additional mirror planes within the 

structure.  During refinement of YbNiGe3, a significant improvement in the 

refinement factor was obtained by allowing one of the Ge sites to be mixed partially 

occupied by Ni atoms.  This change in YbNiGe3 occurs within the (C) building 

block.  Instead of forming an -Po-type fragment with Ge atoms occupying the 

vertices, Ni atoms share occupancies at alternating positions in this building block 

(Figure 1).  This causes a symmetry breaking by eliminating mirror planes, and leads 

to a doubling of the b-direction. 

LuNiGe3 also crystallizes in a distortion of the orthorhombic SmNiGe3-type 

structure, adopting a monoclinic structure, space group C2/m with lattice parameters a 

= 7.8521(16) Å, b = 7.9384(16) Å, c = 10.700(2) Å, and  = 100.53(03) , which is 

another new structure type (Figure 1).  As in YbNiGe3, Ni/Ge mixed occupancy is 

also observed.  As shown in Figure 1, all systems share similar building blocks, but 

the differences in crystal lattice is induced from distortions in the Ni-Ge framework.  

This new phase has positions with similar local environments as in SmNiGe3-type 

structures but with changes in bond distances. 

Conclusions 
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Investigations on flux-grown single crystals of the RENiGe3 series have been 

conducted for their crystal structures, compositions, and as well as theoretical studies 

on the electronic structures.  COHP analysis has suggested electronically driven 

structural stability arises to avoid occupying antibonding Ge-Ge and Ge-Ni states.  

Prior to a structural distortion, Ni deficiencies occur to minimize this antibonding 

population by increasing the chemical pressure with the lanthanide contraction.  
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Supplement Table 1.  Detailed crystallographic data for RENiGe3 series. 

 YNiGe3 CeNiGe3 PrNiGe3 

Single crystal XRD 

Refined composition YNi0.92(1)Ge3 CeNi0.98(1)Ge3 PrNi0.98(1)Ge3

crystal system orthorhombic orthorhombic orthorhombic 

space group Cmmm Cmmm Cmmm 

a, Å 4.044(8) 4.1353(8) 4.1174(8) 

b, Å 21.515(4) 21.838(4) 21.789(4) 

c, Å 4.0517(8) 4.1712(8) 4.1548(8) 

Z 4 4 4 

Volume, Å3 352.52(12) 376.69(13) 372.74(13) 

density (calculated), 

mg/m3 3.442 3.673 3.719 

F(000) 326 364 366 

Absorption Coefficient, 

mm-1 23.267 20.075 20.717 

method/program empirical / SADABS empirical / SADABS empirical / SADABS 

Theta range 3.79 to 34.65°. 3.73 to 34.61° 3.74 to 35.15°. 

hkl ranges -6 h  6 

-34 k  34 

0 l  6 

-6 h  6 

-34 k  34 

-6 l  5 

0 h  6 

0 k  34 

0 l  6 

Rint 0.1085 0.1099 0 

Refinement method Full-matrix 

least-squares on F2

Full-matrix 

least-squares on F2

Full-matrix 

least-squares on F2

Data/parameters 482/23 506/23 507/23 

Completeness to max 2  99.20 % 99.50 % 96.60 % 

Restraints 0 0 0 

Goodness-of-Fit 1.102 0.879 0.943 

final R [I>2 (I)] R1 = 0.0404 R1 = 0.0386 R1 = 0.0330 

 Rw = 0.0825 Rw = 0.0837 Rw = 0.0698 

R indices (all data) R1 = 0.0736 R1 = 0.0617 R1 = 0.0538 

 Rw = 0.1043 Rw = 0.1133 Rw = 0.0744 

Extinction Coefficient 0.040(2) 0.0139(9) 0.0073(5) 

Peak/hole, e/Å3 1.380/-1.721 4.371/-3.238 4.213/-4.612 
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 NdNiGe3 SmNiGe3 GdNiGe3 

Single crystal XRD 

Refined composition NdNi0.97(1)Ge3 SmNi0.93(1)Ge3 GdNi0.87(1)Ge3

crystal system orthorhombic orthorhombic orthorhombic 

space group Cmmm Cmmm Cmmm 

a, Å 4.1051(8) 4.0822(8) 4.0508(8) 

b, Å 21.715(4) 21.635(4) 21.551(4) 

c, Å 4.1334(8) 4.1028(8) 4.0688(8) 

Z 4 4 4 

Volume, Å3 368.47(12) 362.36(12) 355.21(12) 

density (calculated), 

mg/m3 3.792 3.912 4.055 

F(000) 368 372 376 

Absorption Coefficient, 

mm-1 21.391 22.69 24.217 

method/program empirical / SADABS empirical / SADABS empirical / SADABS 

Theta range 3.75 to 35.04°. 3.77 to 34.82°. 3.78 to 34.59°. 

hkl ranges -6 h  6 

-34 k  34 

0 l  6 

-6 h  6 

-29 k  34 

0 l  6 

-6 h  6 

-33 k  34 

0 l  6 

Rint 0.1064 0.0733 0.0948 

Refinement method Full-matrix 

least-squares on F2

Full-matrix 

least-squares on F2

Full-matrix 

least-squares on F2

Data/parameters 506/23 495/23 485/23 

Completeness to max 2  98.40 % 98.80 % 99.10 % 

Restraints 0 0 0 

Goodness-of-Fit 1.079 1.042 1.096 

final R [I>2 (I)] R1 = 0.0432 R1 = 0.0491 R1 = 0.0421 

 Rw = 0.1263 Rw = 0.1308 Rw = 0.01012 

R indices (all data) R1 = 0.0513 R1 = 0.0535 R1 = 0.0444 

 Rw = 0.1328 Rw = 0.1340 Rw = 0.01033 

Extinction Coefficient 0.044(3) 0.048(4) 0.120(7) 

Peak/hole, e/Å3 3.549/-2.043 4.993/-3.874 5.020/-2.552 
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 TbNiGe3 DyNiGe3 HoNiGe3 

Single crystal XRD 

Refined composition TbNi0.86(2)Ge3 DyNi0.82(2)Ge3 HoNi0.77(2)Ge3

crystal system orthorhombic orthorhombic orthorhombic 

space group Cmmm Cmmm Cmmm 

a, Å 4.0352(8) 4.0200(8) 4.0030(8) 

b, Å 21.521(4) 21.437(4) 21.382(4) 

c, Å 4.0548(8) 4.042(8) 4.0249(8) 

Z 4 4 4 

Volume, Å3 352.12(12) 348.33(12) 344.51(12) 

density (calculated), 

mg/m3 4.107 4.185 4.255 

F(000) 378 380 382 

Absorption Coefficient, 

mm-1 25.054 25.901 26.827 

method/program empirical / SADABS empirical / SADABS empirical / SADABS 

Theta range 3.79 to 34.81°. 3.80 to 34.79°. 3.81 to 34.78°. 

hkl ranges 0 h  6 

0 k  34 

0 l  6 

0 h  6 

0 k  33 

0 l  6 

-6 h  6 

-33 k  34 

0 l  6 

Rint 0 0 0.1114 

Refinement method Full-matrix 

least-squares on F2

Full-matrix 

least-squares on F2

Full-matrix 

least-squares on F2

Data/parameters 490/23 482/23 480/23 

Completeness to max 2  99.80 % 99.40 % 99.80 % 

Restraints 0 0 0 

Goodness-of-Fit 0.943 0.934 1.161 

final R [I>2 (I)] R1 = 0.0422 R1 = 0.0417 R1 = 0.0515 

 Rw = 0.0861 Rw = 0.0938 Rw = 0.1330 

R indices (all data) R1 = 0.0547 R1 = 0.0544 R1 = 0.0564 

 Rw = 0.0892 Rw = 0.0975 Rw = 0.1361 

Extinction Coefficient 0.097(6) 0.0110(9) 0.055(4) 

Peak/hole, e/Å3 4.086/-5.221  3.685/-6.367  4.743/-4.039  
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 ErNiGe3 YbNiGe3 LuNiGe3 

Single crystal XRD 

Refined composition ErNi0.61(3)Ge3 YbNi1.04(6)Ge2.89(5) LuNi0.41(4)Ge3.07(4)

crystal system orthorhombic tetragonal monoclinic 

space group Cmmm I41/amd C2/m 

a, Å 3.9583(8)  4.0347(6) 7.8521(16) 

b, Å 21.215(4)  4.0347(6) 7.9384(16) 

c, Å 4.0036(8)  43.211(9) 10.700(2) 

,    100.53(03) 

Z 4 8 8 

Volume, Å3 336.20(12)  703.4(2) 655.7(2) 

density (calculated), 

mg/m3 4.383 4.245 4.573 

F(000) 384 776 780 

Absorption Coefficient, 

mm-1 28.203 28.324 31.177 

method/program empirical / SADABS empirical / SADABS empirical / SADABS 

Theta range 1.92 to 29.03° 5.08 to 34.83°. 3.68 to 34.76°. 

hkl ranges 0 h  5 

0 k  28 

0 l  5 

-4 h  4 

0 k  6 

0 l  68 

-12 h  12 

0 k  12 

0 l  17 

Rint 0 0.018 0 

Refinement method Full-matrix 

least-squares on F2

Full-matrix 

least-squares on F2

Full-matrix 

least-squares on F2

Data/parameters 302/23 473/24 1489/52 

Completeness to max 2  100.00 % 97.90 % 99.30 % 

Restraints 0 0 0 

Goodness-of-Fit 0.98 0.945 1.006 

final R [I>2 (I)] R1 = 0.0601 R1 = 0.0248 R1 = 0.0434 

 Rw = 0.1386 Rw = 0.0508 Rw = 0.1034 

R indices (all data) R1 = 0.0735 R1 = 0.0460 R1 = 0.0572 

 Rw = 0.1432 Rw = 0.0537 Rw = 0.1074 

Extinction Coefficient 0.016(2) 0.00376(17) 0.0159(7) 

Peak/hole, e/Å3 5.816/-3.454 2.014/-2.484  6.718/-3.476  
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Supplement Table 2.  Anisotropic displacement parameters of RENiGe3.

Atom U11 U22 U33 U23 U13 U12

Y 0.015(1) 0.012(1) 0.012(1) 0 0 0 
Ge1 0.014(1) 0.015(1) 0.015(1) 0 0 0 
Ge2 0.018(1) 0.012(1) 0.018(1) 0 0 0 
Ge3 0.019(1) 0.012(1) 0.014(1) 0 0 0 
Ni 0.017(1) 0.010(1) 0.015(1) 0 0 0 
Ce 0.007(1) 0.010(1) 0.015(1) 0 0 0 

Ge1 0.016(1) 0.008(1) 0.018(1) 0 0 0 
Ge2 0.008(1) 0.010(1) 0.020(1) 0 0 0 
Ge3 0.010(1) 0.010(1) 0.024(1) 0 0 0 
Ni 0.010(1) 0.011(1) 0.019(1) 0 0 0 
Pr 0.012(1) 0.011(1) 0.017(1) 0 0 0 

Ge1 0.013(1) 0.012(1) 0.022(1) 0 0 0 
Ge2 0.016(1) 0.012(1) 0.026(1) 0 0 0 
Ge3 0.020(1) 0.011(1) 0.020(1) 0 0 0 
Ni 0.016(1) 0.012(1) 0.020(1) 0 0 0 
Nd 0.019(1) 0.012(1) 0.019(1) 0 0 0 
Ge1 0.021(1) 0.012(1) 0.023(1) 0 0 0 
Ge2 0.023(1) 0.013(1) 0.027(1) 0 0 0 
Ge3 0.027(1) 0.011(1) 0.023(1) 0 0 0 
Ni 0.023(1) 0.013(1) 0.022(1) 0 0 0 
Sm 0.022(1) 0.014(1) 0.012(1) 0 0 0 
Ge1 0.022(1) 0.014(1) 0.017(1) 0 0 0 
Ge2 0.027(1) 0.015(1) 0.019(1) 0 0 0 
Ge3 0.030(1) 0.013(1) 0.017(1) 0 0 0 
Ni 0.025(1) 0.013(1) 0.014(1) 0 0 0 
Gd 0.012(1) 0.013(1) 0.009(1) 0 0 0 
Ge1 0.013(1) 0.015(1) 0.014(1) 0 0 0 
Ge2 0.021(1) 0.014(1) 0.016(1) 0 0 0 
Ge3 0.019(1) 0.012(1) 0.017(1) 0 0 0 
Ni 0.015(1) 0.012(1) 0.012(1) 0 0 0 
Tb 0.016(1) 0.017(1) 0.017(1) 0 0 0 

Ge1 0.023(1) 0.018(1) 0.026(1) 0 0 0 
Ge2 0.018(1) 0.022(1) 0.023(1) 0 0 0 
Ge3 0.029(1) 0.020(1) 0.023(1) 0 0 0 
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Ni 0.022(1) 0.016(1) 0.024(1) 0 0 0 
Dy 0.015(1) 0.015(1) 0.012(1) 0 0 0 
Ge1 0.017(1) 0.021(1) 0.017(1) 0 0 0 
Ge2 0.030(1) 0.016(1) 0.018(1) 0 0 0 
Ge3 0.022(1) 0.016(1) 0.024(1) 0 0 0 
Ni 0.021(1) 0.014(1) 0.017(1) 0 0 0 
Ho 0.012(1) 0.015(1) 0.019(1) 0 0 0 
Ge1 0.013(1) 0.024(1) 0.024(1) 0 0 0 
Ge2 0.027(1) 0.018(1) 0.026(1) 0 0 0 
Ge3 0.018(1) 0.016(1) 0.034(1) 0 0 0 
Ni 0.015(1) 0.014(1) 0.023(1) 0 0 0 
Er 0.019(1) 0.016(1) 0.025(1) 0 0 0 

Ge1 0.022(2) 0.018(2) 0.050(2) 0 0 0 
Ge2 0.021(2) 0.031(2) 0.029(2) 0 0 0 
Ge3 0.047(2) 0.019(2) 0.028(2) 0 0 0 
Ni 0.022(4) 0.014(3) 0.028(4) 0 0 0 
Yb 0.012(1) 0.012(1) 0.013(1) 0 0 0 
Ge1 0.018(1) 0.011(1) 0.014(1) 0 0 0 
Ge2 0.023(1) 0.012(1) 0.013(1) 0 0 0 
Ni 0.017(1) 0.015(1) 0.011(1) 0 0 0 
M 0.023(1) 0.011(1) 0.013(1) 0 0 0 
Lu 0.010(1) 0.010(1) 0.008(1) 0.000(1) 0.000(1) 0.000(1)

Ge1 0.010(1) 0.012(1) 0.009(1) 0 -0.001(1) 0 
Ge2 0.010(1) 0.010(1) 0.013(1) 0 0.003(1) 0 
Ge3 0.010(1) 0.014(1) 0.006(1) 0 0.000(1) 0 
Ge4 0.011(1) 0.011(1) 0.008(1) 0 0.001(1) 0 
Ge5 0.011(1) 0.011(1) 0.008(1) -0.001(1) 0.000(1) 0.000(1)
M 0.012(1) 0.012(1) 0.007(1) 0 -0.001(1) 0 
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Supplement Table 3.  Selected interatomic distances of orthorhombic RENiGe3

series (RE = Y, Ce-Nd, Sm, Gd-Er) tetragonal YbNiGe3, and monoclinic LuNiGe3.

Bond type distance (Å) Bond type distance (Å) 
Y – Ge1 3.0397(7) Ce – Ge1 3.1971(14) 

3.2009(14) Ce – Ge2 3.1213(7) 
Y – Ge2 3.1394(14)  3.2795(14) 
Y – Ge3  Ce – Ge3 3.2075(14) 
Y - Ni 3.1249(8) Ce - Ni 3.2095(9) 
  Ge1 – Ge1 2.454(3) 
Ge1 – Ge1 2.4910(16) Ge2 – Ge2 2.5390(18) 
Ge2 – Ge3 2.8623(4) Ge3 – Ge3 2.457(3) 
Ge3 – Ge3 2.454(3) Ge1 – Ge3 2.9368(4) 
Ge1 – Ni 2.277(2)) Ge1 – Ni 2.3787(13) 
Ge2 – Ni 2.3234(11) Ge2 – Ni 2.352(3) 
Ge3 – Ni 2.3279(11) Ge3 – Ni 2.3623(13) 

Pr – Ge1 3.1078(6) Nd – Ge1 3.0949(7) 
 3.2689(12)  3.2541(12) 
Pr – Ge2 3.1967(11) Nd – Ge2  
Pr – Ge3 3.1863(12) Nd – Ge3 3.1752(12) 
Pr – Ni 3.1961(8) Nd – Ni 3.1823(9) 
Ge1 – Ge1 2.5313(15) Ge1 – Ge1 2.5233(17) 
Ge2 – Ge3 2.9247(4) Ge2 – Ge3 2.9128(4) 
Ge3 – Ge3 2.456(3) Ge3 – Ge3 2.453(3)
Ge1 – Ni 2.340(2) Ge1 – Ni 2.328(2)
Ge2 – Ni 2.3537(11) Ge2 – Ni 2.3487(12) 
Ge3 – Ni 2.3712(11) Ge3 – Ni 2.3607(12) 

Sm – Ge1 3.0744(7) Gd – Ge1 3.0485(6) 
 3.2323(13)  3.2153(10) 
Sm – Ge2 3.1670(13) Gd – Ge2 3.1474(10) 
Sm – Ge3 3.1603(13) Gd – Ge3 3.1435(10) 
Sm – Ni 3.1613(9) Gd – Ni 3.1368(7) 
Ge1 – Ge1 2.5095(18) Ge1 – Ge1 2.5004(14) 
Ge2 – Ge3 2.8938(4) Ge2 – Ge3 2.8711(4) 
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Ge3 – Ge3 2.456(3) Ge3 – Ge3 2.453(2) 
Ge1 – Ni 2.311(3) Ge1 – Ni 2.2883(19) 
Ge2 – Ni 2.3379(13) Ge2 – Ni 2.3240(10) 
Ge3 – Ni 2.3469(13) Ge3 – Ni 2.3319(10) 

Tb – Ge1 3.1326(15) Dy – Ge1 3.0241(8) 
Tb – Ge2 3.0359(8)  3.2008(16) 
 3.2104(16) Dy – Ge2 3.1224(16) 
Tb – Ge3 3.1365(15) Dy – Ge3 3.1195(16) 
Tb – Ni 3.1246(11) Dy – Ni 3.1135(12) 
Ge1 – Ge1 2.461(4) Ge1 – Ge1 2.491(2) 
Ge2 – Ge2 2.497(2) Ge2 – Ge3 2.8504(4) 
Ge3 – Ge3 2.467(4) Ge3 – Ge3 2.455(4) 
Ge1 – Ge3 2.8603(4) Ge1 – Ni 2.263(4) 
Ge1 – Ni 2.3252(16) Ge2 – Ni 2.3046(17) 
Ge2 – Ni 2.276(3) Ge3 – Ni 2.3169(18) 
Ge3 – Ni 2.3151(16)   

Ho – Ge1 3.0091(8) Er – Ge1 3.069(3) 
 3.1943(16) Er – Ge2 2.9727(15) 
Ho – Ge2 3.1108(14)  3.201(3) 
Ho – Ge3 3.1077(14) Er – Ge3 3.077(3) 
Ho – Ni 3.1009(11) Er – Ni 3.082(3) 
Ge1 – Ge1 2.490(2) Ge1 – Ge1 2.463(7) 
Ge2 – Ge3 2.8383(4) Ge1 – Ge3 2.8150(4) 
Ge3 – Ge3 2.456(3) Ge2 – Ge2 2.509(5) 
Ge1 – Ni 2.248(3) Ge3 – Ge3 2.480(8) 
Ge2 – Ni 2.2952(15) Ge1 – Ni 2.279(4) 
Ge3 – Ni 2.3073(15) Ge2 – Ni 2.211(8) 
  Ge3 – Ni 2.255(4) 

Yb – Ge1  3.0360(5) Lu – Ge2 2.9206(13) 
 3.2106(10)  3.0366(12) 
Yb – Ge3  3.1358(9) Lu – Ge3  2.9941(12) 
Yb – Ni  3.1130(6)  3.0867(12) 
Ge1 – Ge1  2.4900(12) Lu – Ge4  3.0422(13)
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Ge2 – Ge3  2.4575(14) Lu – Ni  3.0552(14) 
 2.8530(4) Ge1 – Ge5  2.5672(15) 
Ge1 – Ni  2.2836(16) Ge2 – Ge2  2.635(3) 
Ge2 – Ni  2.3247(8) Ge2 – Ge3  2.521(3) 
 2.8530(4) Ge3 – Ge3  2.434(3) 
  Ge5 – Ge5  2.4876(19) 
  Ge5 – Ge6  2.3865(14) 
  Ge3 – Ni  2.299(2) 
  Ge5 – Ni  2.3865(14) 
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CHAPTER 6 
 

Magnetic Structures of MM As Series (M, M  = Cr, Mn, Fe): 

a Theoretical Investigation 

 

ABSTRACT 

Among the large family of transition metal pnictides, MM As (M, M  = Cr, Mn, Fe) 

are particularly interesting due to their various crystallographic and magnetic 

structural transitions as a function of metal content.  To understand the electronic 

properties of these systems, we have carried out electronic structure calculations 

within density functional theory (DFT) using tight-binding linear muffin-tin orbital 

(TB-LMTO) method with the local spin density approximation (LSDA).  MM As (M, 

M  = Cr, Mn, Fe) compounds were studied among tetragonal Cu2Sb-type. 

 

Introduction 

A large class of intermetallic compounds, particularly ones with group 6, 7, 

and 8 transition metals, adopting the tetragonal Cu2Sb-type crystal structure (space 

group P4/nmm) has attracted much interest due to their rich variety of magnetic 

orderings.  In the Cu2Sb-type structure, there are two crystallographically 

inequivalent metal sites: the M(I) sites, Wyckoff position 2a, which are tetrahedrally 

coordinated by the anions (Sb sites); and M(II) sites, Wyckoff position 2c, in square 

pyramidal coordination.  The anion site, Wyckoff position 2c, is occupied by a 

nonmetal atom (Figure 1).  In particular, the transition metal arsenides exhibit 

peculiar magnetic properties; among these, some have itinerant character, while others 

show localized states, both of which result in almost all possible magnetic behaviors: 
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Figure  1.  Crystal structures of Cu2Sb-type MM As.  M(I) sites are shown in red, 
M(II) in blue, and As are shown in black (in later figures as well). 
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Table  1.  Lattice parameters of MM As series. 

  Cr2As Mn2As MnFeAs Fe2As 

a 3.603 3.76 3.7429 3.63 

c 6.338 6.265 6.0292 5.98 

2c site M(II) z1 0.325 0.265 0.331 0.735 

2c site As   z2 0.725 0.67 0.735 0.33 

#e- of metals 12 14 15 16 

 

Table  2.  Summary of Crystal Structure of Cr2As 

Temperature a (Å) c (Å) Magnetic lines 

90 K 3.60(3) 6.33(8) observed 

293 K 3.60(3) 6.33(8) Not observed 

486 K 3.62(2) 6.37(0) Not observed 
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ferromagnetism, antiferromagnetism, ferrimagnetism, and paramagnetism.  

Numerous empirical and theoretical studies have been pursued to explain the 

relationship between crystal structure and magnetic properties in these compounds; 

however, a clear picture has yet to emerge.  From a technical point of view, M2As 

and MM As are interesting due to their large magnetic entropy changes over magnetic 

ordering temperature, which is near room temperature, when undergoing magnetic 

phase transitions, thus being potential candidates for large magnetocaloric effect 

materials.  In this section, the crystal structures and magnetic properties by both 

experimental and theoretical investigations of Cr2As, Mn2As, MnFeAs, and Fe2As are 

summarized. 

 

Cr2As 

 The crystal and magnetic structure of Cr2As was studied by Watanabe et. al. 1 

with powder neutron diffraction measurements at three different temperatures (90 K, 

293 K, and 486 K).  An antiferromagnetic to paramagnetic transition was determined 

at 393 K by magnetic susceptibility and specific heat measurements2.  Below the 

Néel temperature, purely magnetic reflections in the neutron diffraction patterns were 

observed, which were indexed as 
2
100 , 

2
110 , 

2
310 , and a very weak 

2
300  

reflections.  These 
2
lhk reflections indicate that a doubling of the crystallographic 

unit cell along the c-axis is required to describe the magnetic unit cell.  The finite 

(100) reflection intensity disagreed with Yuzuri and Yamada’s3 proposed model of a 

magnetic structure with ferromagnetically coupled M(I) sites within the (001) planes.  

Also, according to Watanabe et al., the weak intensity at 
2
300  and the strong 
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intensity at 
2
310  agreed with the model that proposed ferromagnetic coupling 

between Cr atoms in the M(II) sites with each other in the doubled magnetic unit cell 

as shown in Figure 2. 

Based on this proposed magnetic structure and assuming the local magnetic 

moments lie only in the (001) plane, the local magnetic moments for Cr(I) and Cr(II) 

were calculated from just the (112) nuclear intensity using the magnetic form factor 

(Cr and As) after Pauling and Sherman4: Cr(I), I = 1.1 ± 0.1 B; and Cr(II), II = 1.2 ± 

0.1 B.1,5  A combination of single crystal and powder time-of-flight (TOF) neutron 

diffraction studies on various compositions and heat-treated specimens confirmed the 

doubling of the chemical sublattice for the magnetic unit cell.  But, in previous work, 

the existence of the (100) reflection, which should have been absent, was deceiving 

and originated from the overlapping (110) reflection of Cr2O3 contamination.  Using 

low temperature, neutron diffraction results on samples with the exact composition 

Cr2.0As, the intensities were calculated to be in good agreement with the observed 

intensities of the magnetic model structure and local moments as shown in Model (2) 

of Figure 2 resulting in local moments: Cr(I), I = 0.40 ± 0.08 B; and Cr(II), II = 

1.34 ± 0.06 B. 

Both Watanabe et al. and Yamaguchi et al. constructed their magnetic 

structures based on the assumption of exchange coupling antiparellel to the (001) 

direction and assigning the oxidation states to be Cr+(I), Cr++(II) and As3-, which were 

predicted by Goodenough6.  However, neither the neutron studies nor torque 

measurements gave any conclusive results on the actual direction of the local 

magnetic moments.  
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Mn2As 

 In the early 1960’s, Yuzuri and Yamada7 also reported the tetragonal Cu2Sb-

type crystal structure and antiferromagnetically coupled magnetic structure of Mn2As 

with the Néel temperature of 573 K by X-ray powder diffraction, thermal analysis, 

magnetic susceptibility, and specific heat measurements.  From the thermomagnetic 

curve under a magnetic field of 8000 Oe, the effective magnetic moment per Mn atom 

was obtained to be 5.2 B.  However, a trace amount of Mn3As2 was unavoidable, 

and gave rise to weak ferromagnetism with a Curie temperature at 273 K.  In 

addition, they proposed a magnetic structure of Mn2As that resembled the magnetic 

lattice of Mn2Sb (see Figure 1) and used molecular field theory26 to explain the nature 

of the magnetic properties.  The calculated Néel temperature as well as the estimated 

heat absorption in the antiferromagnetic-to-paramagnetic transition, however, was too 

different from the experimentally determined values to clearly validate their model. 

 In 1962, Adelson et. al. carried out a neutron diffraction experiment on 

polycrystalline Mn2As at room temperature and determined the local magnetic 

moments for Mn(I) and Mn(II) sites, respectively to be 3.7 B and 3.5 B
8.  A 

doubling of the c-axis to generate the magnetic lattice was clearly resolved by the 

2
300  and 

2
110  reflections with better estimation of the effective magnetic 

moments obtained by minimizing the extinction effects using a thin crystal sample.  

But, the repeated magnetic cell was simply adopted from the previous work7 without 

any further confirmation. 

 

Fe2As 

 Fe2As is among the most investigated for its magnetic properties by many 

groups with contradictory results for its magnetic behavior.  The crystal structure of 
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Fe2As was determined by X-ray and neutron diffraction methods on pillar-shaped 

single crystals at room temperature by Elander et al.6 and Katsuraki9, respectively. 

The first magnetic model proposed an antiferromagnetic structure with a Néel 

temperature of ca. 323 K, and a c-axis doubled from the chemical unit cell, which was 

confirmed by the disappearing magnetic reflections, 
2
100 , 

2
300 , 

2
500 , and 

2
700 , from single crystal neutron diffraction experiments10, that had been 

postulated by Achiwa based on susceptibility measurements.  Katsuraki also stated 

that from the absence of the odd h (h00) reflections in the neutron diffraction results, 

the magnetic moments are evidently aligned perpendicular to the c-axis.  The Néel 

temperature of 323 K was confirmed again by Katsuraki by a temperature dependent 

study of the 
2
100  neutron reflection intensity on two pieces of pillar-shaped Fe2As 

single crystals11.  This study showed complete disappearance of the 
2
100  

reflection intensity at ca. 323 K while the other nuclear intensities of (h00) and (hh0) 

showed no changes over the temperature range from 298 K to 333 K. 

Shortly after, Achiwa and Takaki reported a different Néel temperature of 353 

K based on magnetic anisotropy and field dependence of magnetization measurements 

on a single crystal disk of Fe2As at liquid nitrogen temperatures12.  In 1966, 

Katsuraki and Achiwa showed their agreement with the Néel temperature of Fe2As to 

be 353 ± 1 K based on magnetic susceptibility measurements with a torsion balance, 

powder and single crystal neutron diffraction experiments, as well as the temperature 

dependence of the reflection intensity13.  Furthermore, the effective magnetic 

moment was estimated to be 4.66 B per Fe atom.  They also observed Curie-Weiss 

behavior of the susceptibility curve above the Néel temperature, which showed 

deviations above 773 K due to the existence of a magnetite impurity.   
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MnFeAs 

A powder X-ray diffraction study using Fe K  radiation was performed first in 

1966 to determine the lattice parameters of tetragonal, Cu2Sb-type FeMnAs (a = 

3.73(5) Å, c = 6.03(5) Å).15   These lattice parameters are close to the mean value of 

the lattice parameters (a = 3.698 Å, c = 6.129(5) Å) of the parent systems Fe2As16 (a = 

3.627 Å, c = 5.981 Å) and Mn2As17 (a = 3.769 Å, c = 6.278 Å), which is determined 

by neutron powder diffraction experiment.   

In the M(I) layer, the atoms form a square net with short M(I)–M(I) distances, 

and M(II) atoms form a puckered square nets with arsenides building slab based on 

tetragonal boxes (Figure 1).  In MnFeAs, the in-plane Fe(I)–Fe(I) distance is 2.64 Å, 

whereas the Fe(I)–As distance is 2.45 Å.  Moreover, Mn(II)–Mn(II) distance is 3.35 

Å, and Mn(II)–As at 2.68 and 2.44 Å.  The closest Fe(I)–Mn(II) distance is 2.73 Å.  

Furthermore, this short interlayer M(I)–M(II) distance exists throughout all MM As 

cases.  Consequently, given these geometrical relationships, it is difficult to predict 

the electronic properties and dimensionality of interlayer interactions. 

Magnetic susceptibility measurements indicated antiferromagnetism in 

FeMnAs with a Néel temperature of ca. 463 K, which is also near the mean value 

(462 K) of the Néel temperatures of the parent binary systems - Fe2As (351 K) and 

Mn2As (573 K). 15    

According to powder neutron diffraction, additional reflections were observed 

below the Néel temperature at lkh
2
1,, , which gives rise to doubled magnetic unit 

cell along the c-axis of the crystallographic unit cell.  The local magnetic moments 

are 0.2 B for Fe(I) and 3.6 B for Mn(II), which were calculated based on comparison 

with simulated intensities, and the assumption that the magnetic lattice of MnFeAs 

resembles that of Mn2As, which was supported by comparing the local moment on Fe 
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sites from Mössbauer measurements ( Fe = 0.2 B) without additional supporting 

evidence. 

 In 1988, Sugiyama et. al. investigated the magnetic field induced phase 

transitions for the Fe2-xMnxAs series by applying high values of the local moments a 

magnetization field with changing temperatures on powdered samples of Fe2-xMnxAs 

(x = 1.29, 1.35)18 that best fit over the range of composition studied were determined 

to be: Fe(I), I = 1.55 B; and Mn(II), II = 1.20 B. 

 Further studies of the magnetic phase diagram of Fe2-xMnxAs have been 

carried out by Baron et al. using Rietveld analysis of neutron powder diffraction 

results at 10, 295, and 523 K.  At 10 K, they observed a similar but not identical 

ferrimagnetic behavior for Fe0.72Mn1.28As along both the a- and c- axes using a 

collinear antiferromagnetic model initially constructed by Yoshii and Katsuraki with 

noncompensating magnetic moments.19 

At 295 K, the Mn2As-type antiferromagnetic unit cell was obtained with local 

magnetic moments: Fe(I), I = 1.01(2) B; and Mn(II), II = 3.17(5) B.  At 523 K, 

paramagnetic behavior was observed. 

 For all these studies, electronic structure calculations of these compounds can 

help to eliminate speculations, which were made previously, and to provide the 

opportunity for a better understanding the many interesting physical properties that 

arise from the interplay between the valence electrons of the main group element and 

the conduction electrons of the metal, especially the 3d electrons, which contribute to 

itinerant magnetism. 

 

Methods 

Tight Binding, Linear Muffin-Tin Orbital (TB-LMTO) method using density 
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functional theory was used for all electronic structure investigations in the atomic 

sphere approximation (ASA).  Exchange and correlation were treated in a local spin 

density approximation (LSDA).16  All relativistic effects except spin-orbit coupling 

were taken into account using a scalar relativistic approximation.17  Within ASA, 

space is filled with overlapping Wigner-Seitz (WS) atomic spheres.  The radii of the 

WS spheres were obtained by requiring the overlapping potential to be the best 

possible approximation to the full potential according to an automatic procedure.18  

The WS radii for the atomic sites determined by this procedure are 1.623 Å for Cr, 

1.683-1.725 Å for Mn, 1.592-1.647 Å for Fe, and 1.659-1.723 Å for As.  The basis 

set included 4s, 4p, and 3d orbitals for Cr, Mn, and Fe; 4s and 4p orbitals for As.  

The reciprocal space integrations to determine the self-consistent charge densities, 

densities of states (DOS) and crystal orbital Hamilton populations (COHP)19 were 

performed by the tetrahedron method20 using 196 k-points in the irreducible wedges 

of the corresponding Brillouin zones.  

 

Results and Discussions 

For these compounds, the transition metal ordering, their magnetic ordering 

as well as their local moments were studied.   

For each compound, six different magnetic structures were constructed, some 

of which involved a doubled c-axis with respect to the crystallographic unit cell.  For 

computational purposes, M(I) metals were located at MI1 (0,0,0), MI2 (0,0,1/2), MI3 

(1/2,1/2,0), and MI4 (1/2,1/2,1/2) (eg. Fe1 at (0,0,0) for Fe2As); M(II) metals were 

located at MII5 (0,1/2,z) , MII6 (1/2,0,z) , MII7 (0,1/2, z ), and MII8 (1/2,0, z ).  To 

label these different magnetic structures, a three letter naming scheme was used that 

describes the symmetry of the exchange coupling between adjacent planes of atoms 
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along the c-axis: the first letter (A or F) for coupling between MI site; the second letter 

(A or F) for coupling between MII sites; and the third letter (A or F) for coupling 

between MI and MII sets.  These modes are shown in Figure 4.  For example, the 

experimentally obtained magnetic structure of MnFeAs would be designated as AAF. 

(see Figure 2) 

In Figure 5, the relative total energies of all modes of magnetic structures are 

plotted for MM As.  In Cr2As, the FAA mode was reported to be the most probable 

magnetic structure as discussed in the previous section.  From carefully converged 

calculations, the energies of the AAF and FAA remain very close: the AAF mode is 

slightly more favorable than FAA by 4.4 meV.  This mode has ferromagnetically 

ordered spins between MI and MII sites and antiferromagnetic ordering between sites 

with the same site symmetry.  The energy difference is too small to make a clear 

conclusion on the nature of the magnetic order in the two varieties. 

The values of the total energies of Mn2As and MnFeAs indicated that the 

AFA mode is energetically more favorable than all other modes.  These calculation 

results agree with those reported.  However, only 6.3 meV difference in total energy 

from FFA suggests a possibility to have a magnetic transition to a different spin 

arrangement at higher temperature. 

The results of calculations on Fe2As are not in agreement with reported 

results in terms of total energies.  From neutron diffraction experiments, as 

mentioned earlier, AFF was expected to be the most favorable mode.  However, our 

calculation results indicated that FFF had lower total energy than AFF by 42.3 meV.   

The calculated total DOS curves of MM’As are shown in Figure 6.  At each 

site, a local coordinate system is set to the corresponding crystallographic coordinate 

system: c-axis is designated as the local z-axis, and a, b-axis are designated as the 
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Table  3.  Calculated average magnetic moments ( B) of MM As. 
 

Mode AFA AFF FFA FFF AAF FAA 
Cr2As       
Total 0 0.0102 3.640 0 0 0 
CrI 0.460(0) 0.039(1) 0.471 (17) 1.981(2) 0(0) 0.297(0) 
CrII 1.629(10) 1.258(5) 1.418(3) 3.500(1) 0(0) 1.691(0) 

Mn2As       
Total 0 0.0181 3.33 13.4 0 0 
MnI 2.028(0) 1.795(0) 1.964(0) 1.691(0) 1.650(0) 1.560(25)
MnII 2.745(4) 2.200(0) 2.796(0) 1.691(0) 2.297(0) 2.396(3) 

MnFeAs       
Total 0.034 0.013 7.521 16.990 0.008 0.014 
FeI 1.854(3) 1.854(3) 1.981(2) 1.981(2) 1.977(1) 1.840(0) 

MnII 3.511(1) 3.510(1) 3.500(1) 3.500(1) 3.307(6) 3.726(0) 
Fe2As       
Total 0.0659 0 2.67 16.4 0.001 0 
FeI 0.548(1) 2.213(0) 1.783(0) 2.251(0) 1.630(1) 1.626(0) 
FeII 1.633(2) 1.941(2) 1.131(0) 1.937(0) 1.658(0) 1.505(0) 
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local x, y-axis.  In a square pyramidal field, degenerate 3d atomic orbitals split into 

(dxz, dyz), dz2, dxy, and dx2-y2 manifolds, whereas in the tetrahedral environment of 

arsenides, the 3d levels are split into (dxz, dyz), dxy, dz2, and dx2-y2 manifolds.  These 

respective environments result in totally different DOS features within the MM As 

structures.  The first noticeable feature in these curves is in the Cr2As DOS profile as 

compared to the other three systems.  Mn2As, MnFeAs, and Fe2As show essentially 

continuous DOS curves, but a discontinuous energy region is observed for the Cr2As.  

The lower part of the valence band at –2.7 eV is formed by bonding overlap between 

Cr dxz and dyz states with As p states.  It is separated by a pseudogap over the range of 

–2.7 to –3.5 eV. 

In the spin polarized DOS curves in Figure 7, the transition metal states are 

clearly identified by separate contributions from square pyramidal and tetrahedral 

environments.  From these plots, it is evident that significant mixing occurs between 

Cr d and As p states resulting in shifts of the bonding states to create a pseudogap.  

Within the valence band, two parts can be considered.  While the lower energy part, 

located at –2.5 ~ –2.0 eV, is composed mainly of metal dxz and dyz states, the higher 

energy part from –2 eV to the Fermi level is dominated by the dz2 and dxy states, which 

are split into majority and minority spin states almost symmetrically and, thus, 

responsible for the magnetic moment.  The levels at and just above the Fermi level 

are formed mainly by dxy, and dx2-y2 states with dx2-y2 states giving significant 

contribution to the upper DOS.  The dx2-y2 states are shifted to higher energy, well 

above the Fermi level relative to dxy states, by forming the base of the pyramid.  

The calculated local magnetic moments are summarized in Table 3.  Larger 

magnetic moments in Mn2As, MnFeAs, and Fe2As lead to greater separations 

between majority and minority spin states, resulting in observable differences of the 
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Figure  7.  Spin polarized DOS of MM As.  (a) Cr2As, (b) Mn2Fe, (c) MnFeAs, 
and (d) Fe2As.  All plots are shown with one equivalent contributions from M(I) in 
tetrahedral site (in red), M(II) in square pyramidal site (in blue), and arsenide 
contributions (in black).  Normalized Fermi energy is shown in solid line. 
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DOS curves than seen in Cr2As, as shown in Figure 7.  

  Throughout the MM As series, higher local moments were obtained at the 

square pyramidal site than at the tetrahedral site.  The values of the calculated local 

moments for the M(II) sites were all very close to the measured magnetic moments.  

However, our calculations indicated higher local magnetic moments at the M(I) sites 

in contrast to the measured local moments that were often quenched in their 

tetrahedral environments in the MM As structure.  The nature of these atypical 

quenched moments was not examined carefully and our results suggested that higher 

local moments should be considered.   

Figure 8 illustrates crystal field splitting schemes for M(I) and M(II) sites in 

local tetrahedral and square pyramidal fields, respectively.  Combining the crystal 

fields and a local magnetic fields gives rise to possible d-orbital splitting patterns as 

shown.  When the Mn(II) atoms are coordinated by arsenides in the square 

pyramidal field, two possible splitting scenarios could be considered.  These 

different schemes result in a different number of unpaired electrons for a Mn2+ d5 

configuration as one (left) and three (right).  The estimated (spin-only) local 

magnetic moments for these series are 1.73 B (left) and 3.87 B (right).  The 

experimentally determined local magnetic moment of Mn(II) is 3.6 B and the 

calculated moment by LMTO was 3.5 B, both of which suggest that the more 

probable scheme is the latter one (right).  As for Fe(I), the experimental local 

moment in MnFeAs was obtained to be 0.2 B, which is not usually observed for Fe 

in intermetallic compounds.  For Fe to have the quenched local magnetic moment in 

the tetrahedral field, significant orbital overlaps are necessary to minimize the number 

of unpaired electrons as shown in Figure.  The local moment obtained by our 

electronic structure calculations was 1.9 B, which matches the estimated moment of 
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Figure  8.  Crystal field splitting scheme at local symmetries around Mn and Fe. 
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1.73 B from the splitting scheme for low spin Fe+ d7.  In order to achieve this local 

moment, a tetragonal distortion of the local tetrahedral field is necessary.  One of the 

problems associated with the estimation of local magnetic moments enters with the in-

plane spin-spin interactions between M(I) sites.  In spite of the assumption 

considering only ferromagnetically ordered spin states within the M(I) layer, when in-

plane interactions are antiferromagnetically oriented, the resulting overall moment for 

that plane is quenched. 

  COHP curves for selected interatomic interactions in MnFeAs are shown in 

Figure 9.  The first noticeable feature in these COHP curves is the Fermi level 

locating near the peaks of the Fe(I)–Fe(I) and Fe(I)–Mn(II) minority spin states 

showing greater bonding character, whereas the majority spin states have the 

nonbonding character.  The shorter interactions are found between metal and 

arsenides throughout the structure.  The majority spin states of the Fe(I)–As bond at 

2.45 Å is optimized while the Mn(II)–As bonding states start to fill antibonding 

orbitals 3 eV below the Fermi level.  

 

Conclusions 

We have investigated the electronic structures and transition metal local magnetic 

moments in tetragonal MM As using first principles calculations.  The calculated 

local magnetic moments agree well with the experimental value for the square 

pyramidal M(II) site, but disagree for the M(I) tetrahedral site in MnFeAs.  The 

calculated DOS and COHP analysis revealed greater contribution to electronic 

stability arises from the M(I) d states and their bonding interactions with arsenides 

optimized. 
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Figure  9.  Calculated COHP curves of selected bondings in MnFeAs.  Majority 
spin states are shown in solid lines, minority spin states are shown in dotted lines. 
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Supplement figure  1.  Relative DOS curves of metal sites.  Metal site’s DOS 

ratio,
pysq

Td

M
M

.

, is plotted against energy: (a) Cr2As, (b) Mn2As, (c) MnFeAs, and 

Fe2AS.  Horizontal line indicates the Fermi energy. 
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CHAPTER 7 

 

General Conclusions 

 

 This research project has focused on exploring the complex chemistry of 

structure-bonding-property relationships in -brass phases as well as their 

crystallographic and electronic structural correlations with Heusler and Zintl phases.  

The studies of the location of the Fermi level in DOS and COHP curves, offer better 

understanding for the effects of vec changes on chemical composition, crystal 

structure, and magnetic property in these compounds. 

Changing chemical composition by allowing shared site occupancies and/or by 

creating vacancies.  Our study on flux-grown large single crystals of the RENi1 xGe3 

series provides the understanding the relationships between chemical composition and 

crystal structure.  Increasing vec along the Lanthanide series, vacancies at the Ni site 

of RENiGe3 increase up to the Er compound followed by lattice distortions.  With 

this chemical pressure with the lanthanide contraction, COHP analysis has suggested 

that Ni deficiencies occur to minimize this antibonding population to achieve 

electronically driven structural stability. 

Distorting the lattice structure to specifically eliminate the antibonding interactions. 

The study on CrxFe1 xGa series illustrates how trigonal distortion occurs from the 

cubic -brass structure, and how the magnetically active 3d elements behave in 

magnetically frustrated environments.  The band structure calculations indicate the 

Fermi energy is located near the pseudogap which favors the structural distortion to 

accommodate the changes in vec.  
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Shifting the majority spin states to lower energy and minority spin states to higher 

energy to create itinerant magnetic order.  The study on MM As offers the 

understanding of the spin orientations of 3d metal in tetrahedral and square pyramidal 

environments for various valence electron counts.  Band calculations indicate the 

majority and minority states split especially in the vicinity of the Fermi level to 

maintain structural stability especially at the tetrahedral site.  

The Ti0.80(2)Ni1.83(2)Ga1.12 compound synthesized during the course of this 

investigation provide an introduction to the intermetallic phase that bridges the 

Heusler phase and the -brass structure with an interesting array of subjects for further 

study with some synthetic problems which should be addressed.  Band structure 

calculations indicate that the short interatomic contacts are optimized, and the 

chemical composition, atomic distribution, as well as structure are strongly influenced 

by a pseudogap in the DOS curve.  This represents a link between Hume-Rothery 

electron phases and polar intermetallics. 
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APPENDIX 3.1 

Single Crystal Structure of Cr3Ga

Introduction 

 During crystal structure studies of Cr1-xFexGa series, a binary compound 

Cr3Ga was found.  The stoichiometric mixture of CrGa was heated in sealed, 

evacuated silica tubes at 1323 K for 80 hours.  After cooling at the rate of 1 K/min. to 

1123 K, the sample was annealed at 1123 K for 1 week.  The reaction was terminated 

by turning off the furnace.  The Cr3Si-type Cr3Ga crystallizes in cubic structure, 

which was first reported by Girgis by powder X-ray diffraction experiment.1 In this 

section, we report the refinement results by single crystal X-ray diffraction 

experiment.  

Discussion

Details of X-ray single crystal diffraction experiment structural data and 

a

b

c

Ga
Cr
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crystallographic data recording/refinement parameters for Cr3Ga are listed in the 

Table 1.  The refined site occupancies and fractional coordinates with isotropic / 

anisotropic thermal displacement parameters are listed in Table 2 & 3. 

Table 1.  Crystal diffraction data and structure refinement for Cr3Ga.

Empirical formula  Cr3Ga  
Formula weight  121.72 
Temperature  293(2) K 
Wavelength  0.71073 Å 
Crystal system  Cubic 
Space group  Pm 3 n (no. 223) 
Unit cell dimensions a = 4.6573(5) Å 
Volume 101.019(19) Å3 
Z 2 
Absorption coefficient 18.175 mm-1 
F(000) 110 
Crystal size 20 x 20 x 20 mm3 
Theta range for data collection 6.19 to 28.06°. 
Index ranges -6  h  5, -5  k  5, -3  l  6 
Reflections collected 496 
Independent reflections 32 [R(int) = 0.0625] 
Completeness to theta  96.9 %  
Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 32 / 0 / 5 
Goodness-of-fit on F2 1.618 
Final R indices [I > 2sigma(I)] R1 = 0.0276, wR2 = 0.0710 
R indices (all data) R1 = 0.0276, wR2 = 0.0710 
Extinction coefficient 0.07(3) 
Largest diff. peak and hole 0.939 and -1.076 e.Å-3 

Table 2.  Atomic coordinates and equivalent isotropic displacement parameters 
(Å2 103) for Cr3Ga.  Ueq is defined as one third of the trace of the orthogonalized Uij 
tensor. 

 Wyck. Occupancy x y z Ueq 
Ga  2a 1 0 0 0 3(1) 
Cr 6c 1 1/4 0 1/2 5(1) 
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Table 3.   Anisotropic displacement parameters  (Å2 103) for Cr3Ga.  The 
anisotropic displacement factor exponent takes the form:  -2 2[ h2 a*2U11 + ...  + 2 h 
k a* b* U12 ] 

 U11 U22 U33 U23 U13 U12 
Ga 3(1) 3(1) 3(1) 0 0 0 
Cr 5(2) 5(1) 5(1) 0 0 0 

Reference 

[1]  Girgis, K. Acta Crystallographica. 1958, 11, 604. 
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APPENDIX 4.1 

 

Crystal Structures of V0.6(Co1-xGax)2.67 series 

 and Nb2.3(1)RhGa1.4(1)

 

 

ABSTRACT 

A new series of compounds, V1-y y(Co1-xGax)4 (0.5  x  0.375; 0.09  y  0.04) 

series and Nb2.3(1)RhGa1.4(1) have been prepared and their crystal structures were 

characterized by powder and single crystal X-ray diffraction experiments.  The new 

phases crystallize in a cubic Sc11Ir4-type (G-phase) structure with space group 

3Fm m (No. 225), Z = 4.   

 

 

Introduction 
During our investigations in search of isostructural and/or distorted -brass 

phases in intermetallic gallides, we have synthesized five compounds in V-Co-Ga 

system and one Nb-Rh-Ga compound adopting the 26-atom -brass cluster as a 

building block in a face-centered cubic lattice.  

 

Synthesis. Vanadium (purity 99.7%, Ames Lab.), cobalt (99.995%, Ames Lab.), 

and gallium (99.9999%, Alfa Aesar) were taken as starting materials for synthesis.  A 

mixture of different loading compositions (Table 1.) was placed in an evacuated (< 10-

4 torr) and sealed-off silica tube.  The alloys were melted at 1373 K for 24 hours, and 

the product was slowly cooled down (1 K/min) to 1123 K followed by 48 hours of 

annealing.  The product appears to be stable against decomposition in both air and 

moisture over a period of several months at room temperature.  
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Figure 1.  Unit cell structure and -brass cluster representation of V0.6(Co1-xGax)2.67 
series.  (a) unit cell structure is shown with Ga in green, V in blue, and Co in red.  (b) 
-brass cluster representation is shown.  (c) Co(3) site is highlighted in black.  (d) 

Co(2) site is highlighted in grey. 

 

Discussion.  

V1-y y(Co1-xGax)4 crystallizes in the Sc11Ir4-structure type, Pearson symbol 

cP120.  This structure is face-centered cubic, space group 3Fm m  (No. 225), with six 

atomic positions in the asymmetric unit.  A summary of crystallographic data, atomic 

positions, site occupancy factors, and temperature displacements factors are listed in 

Tables 1-3. 

----------  Table 1 - 3  ---------- 
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Figure 1 shows the unit cell structure of V1-y y(Co1-xGax)4.  The structure is 

characterized by the presence of a 26-atom -brass cluster as its fundamental building 

block.  This cluster contains four polyhedral units: an inner tetrahedron, an outer 

tetrahedron, an octahedron encapsulating two tetrahedra, and an outermost 

cuboctahedron (Figure 1).  Throughout these systems, the inner tetrahedron is made 

only with Ga atoms and the cuboctahedron with only V atoms.  However, one sample 

showed a mixed occupancy in the Co site, which forms the octahedron with 

Co:Ga=90:10.  Also, another site that forms the outer tetrahedron was found to have 

Co/Ga mixing from 10 to 30% Ga content, with one sample showing full occupancy 

with only Co.  In a previous study (Gourdon & Miller), experimental and theoretical 

results indicated that the outer tetrahedron and the octahedron attracts atoms with 

lower valence electron density, and the inner tetrahedron and the cuboctahedron 

attracts atoms with greater valence electron density.1  In V1-y y(Co1-xGax)4 series, Ga 

atoms ( Pauling=1.81) contributing 13 electrons (ten 3d + three 4p) occupy the inner 

tetrahedron site.  The outer tetrahedron site and the octahedron site are preferably 

occupied by Co atoms with minor Ga mixing.  However, in the V1-y y(Co1-xGax)4 

series, the most electropositive V atoms ( Pauling=1.63) with five 3d valence electrons 

fully occupy the cuboctahedron site, which showed opposite preference in having 

greater valence electron density in the previous study.  In -brass structures, the 26-

atom clusters are isolated, whereas these clusters are connected by sharing the 

cuboctahedron faces in the V1-y y(Co1-xGax)4 structure.
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Table  2.  Atomic coordinates and equivalent isotropic displacement parameters 
(Å2 103) for V1-y y(Co1-xGax)4 series and Nb2.3(1)RhGa1.4(1).  Ueq is defined as one 
third of the trace of the orthogonalized Uij tensor. 

 Wyck. Occup. x y z Ueq 

Ga1 32f 1 0.1524(1) 0.3476(1) 0.1524(1) 11(1) 

Ga2 4b 1 0 1/2 0 15(1) 

Co1 4a 1 0 0 0 14(2) 

Co2 24d 1 1/4 1/4 0 8(1) 

Co3 32f 1 0.1203(1) 0.1203(1) 0.1203(1) 6(1) 

V1 24e 0.96(2) 0 -0.2788(3) 0 8(1) 

Ga1 32f 1 0.1515(1) 0.3485(1) 0.1515(1) 11(1) 

Ga2 4b 1 0 1/2 0 14(1) 

Co1 4a 1 0 0 0 10(1) 

Ga3 24d 1 1/4 1/4 0 8(1) 

Co3 32f 1 0.1208(1) 0.1208(1) 0.1208(1) 8(1) 

V1 24e 0.96(1) 0 -0.2779(2) 0 9(1) 

Ga1 32f 1 0.1513(1) 0.3487(1) 0.1513(1) 10(1) 

Ga2 4b 1 0 1/2 0 13(2) 

Co1 4a 1 0 0 0 8(2) 

Co2 24d 1 1/4 1/4 0 6(1) 

M3 Co3 32f 0.71(9) 0.1209(2) 0.1209(2) 0.1209(2) 6(1) 

Ga3  0.29(9) 0.1209(2) 0.1209(2) 0.1209(2) 6(1) 

V1 24e 0.91(2) 0 -0.2780(4) 0 3(1) 

Ga1 32f 1 0.1516(1) 0.3484(1) 0.1516(1) 11(1) 

Ga2 4b 1 0 1/2 0 14(1) 

Co1 4a 1 0 0 0 10(1) 

Co2 24d 1 1/4 1/4 0 7(1) 

M3 Co3 32f 0.75(5) 0.1208(1) 0.1208(1) 0.1208(1) 7(1) 

Ga3  0.25(5) 0.1208(1) 0.1208(1) 0.1208(1) 7(1) 

V1 24e 0.94(1) 0 -0.2781(2) 0 7(1) 
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Ga1 32f 1 0.1524(2) 0.3476(2) 0.1524(2) 8(1) 

Ga2 4b 1 0 1/2 0 20(4) 

Co1 4a 1 0 0 0 11(4) 

Co2 24d 1 1/4 1/4 0 3(1) 

M3 Co3 32f 0.81(16) 0.1205(3) 0.1205(3) 0.1205(3) 4(1) 

Ga3 32f 0.19(16) 0.1205(3) 0.1205(3) 0.1205(3) 4(1) 

V1 24e 0.94(4) 0 -0.2783(7) 0 1(2) 

Rh1 24d 1 1/4 1/4 0 12(1) 

Nb1 4b 0.87(3) 0 0 1/2 26(5) 

Nb2 24e 0.91(4) 0 0 -0.2132(5) 12(2) 

Nb3 32f 1 0.1210(4) 0.1210(4) 0.3790(4) 23(2) 

Ga1 4a 1 0 0 0 73(12) 

Ga2 32f 0.94(4) 0.3471(3) 0.3471(3) 0.1529(3) 17(2) 

Table  3.   Anisotropic displacement parameters  (Å2 103) for V1-y y(Co1-xGax)4 

series and Nb2.3(1)RhGa1.4(1).  The anisotropic displacement factor exponent takes the 
form:  -2 2[ h2 a*2U11 + ...  + 2 h k a* b* U12 ] 
 

 U11 U22 U33 U23 U13 U12 

Ga1 11(1) 11(1) 11(1) -1(1) 1(1) -1(1) 

Ga2 15(1) 15(1) 15(1) 0 0 0 

Co1 14(2) 14(2) 14(2) 0 0 0 

Co2 9(1) 9(1) 7(1) 0 0 3(1) 

Co3 6(1) 6(1) 6(1) 0(1) 0(1) 0(1) 

V1 7(1) 8(2) 7(1) 0 0 0 

Ga1 11(1) 11(1) 11(1) -3(1) 3(1) -3(1) 

Ga2 14(1) 14(1) 14(1) 0 0 0 

Co1 10(1) 10(1) 10(1) 0 0 0 

Co2 9(1) 9(1) 7(1) 0 0 2(1) 

Co3 8(1) 8(1) 8(1) 0(1) 0(1) 0(1) 

V1 8(1) 10(1) 8(1) 0 0 0 
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Ga1 10(1) 10(1) 10(1) -1(1) 1(1) -1(1) 

Ga2 13(2) 13(2) 13(2) 0 0 0 

Co1 8(2) 8(2) 8(2) 0 0 0 

Co2 6(1) 6(1) 5(2) 0 0 3(1) 

M3 6(1) 6(1) 6(1) 0(1) 0(1) 0(1) 

V1 3(2) 3(2) 3(2) 0 0 0 

Ga1 11(1) 11(1) 11(1) -2(1) 2(1) -2(1) 

Ga2 14(1) 14(1) 14(1) 0 0 0 

Co1 10(1) 10(1) 10(1) 0 0 0 

Co2 8(1) 8(1) 5(1) 0 0 2(1) 

M3 7(1) 7(1) 7(1) 0(1) 0(1) 0(1) 

V1 7(1) 9(1) 7(1) 0 0 0 

Ga1 8(1) 8(1) 8(1) 2(1) -2(1) 2(1) 

Ga2 20(4) 20(4) 20(4) 0 0 0 

Co1 11(4) 11(4) 11(4) 0 0 0 

Co2 4(2) 4(2) 2(3) 0 0 4(2) 

M3 4(1) 4(1) 4(1) 1(1) 1(1) 1(1) 

V1 1(3) 0(4) 1(3) 0 0 0 

Rh1 14(2) 14(2) 9(2) 0 0 -4(2) 

Nb1 26(5) 26(5) 26(5) 0 0 0 

Nb2 10(2) 10(2) 17(3) 0 0 0 

Nb3 23(2) 23(2) 23(2) -8(2) -8(2) 8(2) 

Ga1 73(12) 73(12) 73(12) 0 0 0 

Ga2 17(2) 17(2) 17(2) -1(2) -1(2) 1(2) 

References 

[1] Gourdon, O.; Gout, D.; Williams, D. J.; Proffen, T.; Hobbs, S.; Miller, G. J. Inorg. 
Chem. 2007, 46, 251. 
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APPENDIX 4.2 

Crystal Structure of Ti0.48(1)NiGa2

Introduction 

 During our attempts to grow large single crystals of Ti-Ni-Ga compounds 

using Ga-flux, a new compound Ti0.48(1)NiGa2 was found.  Loading Ti : Ni : Ga = 

0.54 : 1 : 4.6 in an alumina crucible encapsulated in a sealed and evacuated silica tube 

yielded large (ca. 3 – 5 mm) single crystals.  The starting mixture was heated at 1323 

K for 2 hours.  After cooling at the rate of 1 K/min. to 1123 K, the sample was 

annealed at 1123 K for 2 days.  After temperature was lowered to 523 K over 5 hours, 

remaining Ga-flux was removed by centrifuging, followed by etching in 0.1 M HCl 

(aq).  The Ti0.48(1)NiGa2 crystallizes in a new monoclinic structure, Pearson code oF56 

and Wyckoff sequence omhdba.  In this section, we report the refinement results by 

single crystal X-ray diffraction experiment.  
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Discussion

Details of X-ray single crystal diffraction experiment structural data and 

crystallographic data recording/refinement parameters for Ti0.48(1)NiGa2 are listed in 

the Table 1.  The refined site occupancies and fractional coordinates with isotropic / 

anisotropic thermal displacement parameters are listed in Table 2 & 3. 

Table 1.  Crystal diffraction data and structure refinement for Ti0.48(1)NiGa2. 

Empirical formula  Ti0.48(1)NiGa2 
Formula weight  176.33 
Temperature  293(2) K 
Wavelength  0.71073 Å 
Crystal system  Orthorhombic 
Space group  Fmmm (no. 69)  
Unit cell dimensions a = 8.1564(16) Å 
 b = 12.414(3) Å 
 c = 8.1283(16) Å 
Volume 823.0(3) Å3 
Z 8 
Absorption coefficient 12.665 mm-1 
F(000) 648 
Crystal size 35 x 35 x 35 mm3 
Theta range for data collection 3.28 to 28.62°. 
Index ranges 0  h  10, 0  k  16, 0  l  10 
Reflections collected 315 
Independent reflections 315 [R(int) = 0.0000] 
Completeness to theta  100.00% 
Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 315 / 0 / 30 
Goodness-of-fit on F2 0.468 
Final R indices [I > 2sigma(I)] R1 = 0.0330, wR2 = 0.0878 
R indices (all data) R1 = 0.0682, wR2 = 0.1070 
Extinction coefficient 0.00145(17) 
Largest diff. peak and hole 1.067 and -1.832 e.Å-3 
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Table 2.  Atomic coordinates and equivalent isotropic displacement parameters 
(Å2 103) for Ti0.48(1)NiGa2.  Ueq is defined as one third of the trace of the 
orthogonalized Uij tensor. 
 

 Wyck. Occupancy x y z Ueq 
Ga1 16m 1 1/2 0.3586(1) 0.2500(4) 23(1) 
Ga2 16o 1 0.2503(4) 0.3592(1) 0 22(1) 
Ni1 8d 1 1/4 1/2 1/4 10(1) 
Ni2 8h 1 1/2 0.2503(4) 0 10(1) 
Ti1 4b 1 0 1/2 0 6(1) 
Ti2 8g 0.465(15) 0.4701(17) 1/2 0 30(5) 

 

Table 3.   Anisotropic displacement parameters  (Å2 103) for Ti0.48(1)NiGa2.  The 
anisotropic displacement factor exponent takes the form:  -2 2[ h2 a*2U11 + ...  + 2 h 
k a* b* U12 ] 
 

 U11 U22 U33 U23 U13 U12 
Ga1 40(1) 24(1) 6(1) 1(1) 0 0 
Ga2 7(1) 43(1) 17(1) 0 0 0(1) 
Ni1 8(1) 15(1) 7(1) 0 1(2) 0 
Ni2 7(1) 16(1) 8(1) 0 0 0 
Ti1 12(3) 4(2) 3(3) 0 0 0 
Ti2 21(10) 42(7) 29(6) 0 0 0 
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APPENDIX 4.3 

Single Crystal Structure of NbGa3

Introduction 

During our attempts to grow large single crystals of Nb-Rh-Ga compounds using Ga-

flux, a binary compound NbGa3 was found.  Loading Nb : Rh : Ga = 1 : 1 : 10 in an 

alumina crucible encapsulated in a sealed and evacuated silica tube yielded large (ca. 

2 mm) truncated cubic single crystals.  The starting mixture was heated at 1323 K for 

2 hours.  After cooling at the rate of 1 K/min. to 1123 K, the sample was annealed at 

1123 K for 2 days.  After temperature was lowered to 523 K over 5 hours, remaining 

Ga-flux was removed by centrifuging, followed by etching in 0.1 M HCl (aq).  The 

TiAl3-type NbGa3 crystallizes in tetragonal structure, which was first reported by 

Meissner by powder X-ray diffraction experiment.1  In this section, we report the 

refinement results by single crystal X-ray diffraction experiment. 
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Details of X-ray single crystal diffraction experiment structural data and 

crystallographic data recording/refinement parameters for NbGa3 are listed in the 

Table 1.  The refined site occupancies and fractional coordinates with isotropic / 

anisotropic thermal displacement parameters are listed in Table 2 & 3. 

Table 1.  Crystal diffraction data and structure refinement for NbGa3. 

Empirical formula  NbGa3 
Formula weight  614.14 
Temperature  293(2) K 
Wavelength  0.71073 Å 
Crystal system  tetragonal 
Space group  I4/mmm 
Unit cell dimensions a = 3.7936(5) Å 
Volume b = 3.7936(5) Å 
Z c = 8.7449(17) Å 
Absorption coefficient 125.85(3) Å3 
F(000) 1 
Crystal size 36.805 mm-1 
Theta range for data collection 272 
Index ranges 35 x 35 x 35 mm3 
Reflections collected 4.66 to 34.84°. 
Independent reflections -3  h  4, 0  k  6, 0  l  13 
Completeness to theta  151 
Refinement method 106 [R(int) = 0.0129] 
Data / restraints / parameters 99.1 % 
Goodness-of-fit on F2 Full-matrix least-squares on F2 
Final R indices [I > 2sigma(I)] 106 / 0 / 8 
R indices (all data) 0.860 
Extinction coefficient R1 = 0.0206, wR2 = 0.0429 
Largest diff. peak and hole R1 = 0.0240, wR2 = 0.0439 

173



www.manaraa.com

Table 2.  Atomic coordinates and equivalent isotropic displacement parameters 
(Å2 103) for NbGa3.  Ueq is defined as one third of the trace of the orthogonalized Uij 
tensor. 
 

 Wyck. Occupancy x y z Ueq 
Ga1 2b 1 0 0 1/2 13(1) 
Ga2 4d 1 0 1/2 1/4 12(1) 
Nb 2a 1 0 0 0 9(1) 

 

Table 3.   Anisotropic displacement parameters  (Å2 103) for NbGa3.  The 
anisotropic displacement factor exponent takes the form:  -2 2[ h2 a*2U11 + ...  + 2 h 
k a* b* U12 ] 
 

 U11 U22 U33 U23 U13 U12 
Ga1 11(1) 11(1) 17(1) 0 0 0 
Ga2 13(1) 13(1) 11(1) 0 0 0 
Nb 9(1) 9(1) 7(1) 0 0 0 

 

Reference 

[1] Meissner, H. G.; Schubert, K. Zeitschrift fuer Metallkunde. 1965, 56, 475. 
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APPENDIX 5.1 

 

Anisotropic Physical Properties of RNixGe3 Series 

(R = Y, Ce-Nd, Sm, Gd-Lu) 
 

(manuscript in preparation for submission to Physical Review B) 

 
E. D. Mun, #% S. L. Bud’ko, # P. C. Canfield#% 

Hyunjin Ko, #& Gordon J. Miller#& 

 
#Ames Laboratory US DOE and %Department of Physics and Astronomy, Iowa State University, Ames, 

IA 50011-3111, USA 
&Department of Chemistry, Iowa State University, Ames, IA 50011-3111, USA 

 (our crystallography and chemical composition studies will be part of this paper) 

 

ABSTRACT 

The magnetic, transport, and thermal properties of the RNiGe3 compounds are 

discussed in terms of a combined elementary magnon (spin waves) excitation, 

magnetic superzone formation, and crystalline electric field (CEF).  We have studied 

flux-grown single crystals by measuring magnetic susceptibility, magnetization, 

electrical resistivity, magnetoresistance, and specific heat.  A clear anisotropy and an 

antiferromagnetic ordering of the lanthanide series (Ce-Nd, Sm, Gd-Tm) have been 

observed above 1.8 K from the magnetic susceptibility and all of these members 

showed a metamagnetic transition at 2 K for fields below 70 kOe except Sm.  The 

resistivity of these series follows metallic behavior in the high-temperature region and 

below ordering temperatures shows unusual behavior as a function of temperature.  

For heavy rare-earth compounds (R = Gd, Tb, Dy, Ho) just below their ordering 
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temperatures the resistivities and magnetoresistances exhibited a significant 

anisotropy and unusual anomalies between different current directions.  These 

anomalies are interpreted in terms of the formation of magnetic superzones.  At low 

temperature, the magnetic contribution to the specific heat is well described by 

linearized antiferromagnetic spin wave analysis and shows a broad peak above 

ordering temperature due to the contribution of excited state energy levels.  In an 

antiferromagnet, an anisotropy can have a huge effect on thermodynamic properties 

because of interplay with exchange energy.  The low-temperature specific heat and 

magnetic susceptibility data show strong influences of magnetic interaction.  The 

entropy calculated from the specific heat measurements and the reduction of magnetic 

susceptibility show that there is considerable effect of CEF’s in these compounds.  We 

have analyzed the experimental results by taking into account CEF and detailed 

analyses are given. 
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APPENDIX 5.2 

Single Crystal Structure of ErNi1.53(1)Ge2

Introduction 

 During our studies on flux-grown single crystals of RENi1-xGe3 series, a 

byproduct crystal was obtained from ErNiGe3.  X-ray diffraction analyses yielded a 

monoclinic ErNi1.53(1)Ge2. The ErNi1.53(1)Ge2 crystallizes in a new monoclinic 

structure, Pearson code mC76 and Wyckoff sequence j5i9.  In this section, we report 

the refinement results by single crystal X-ray diffraction experiment.  

Discussion

Details of X-ray single crystal diffraction experiment structural data and 
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crystallographic data recording/refinement parameters for ErNi1.53(1)Ge2 are listed in 

the Table 1.  The refined site occupancies and fractional coordinates with isotropic / 

anisotropic thermal displacement parameters are listed in Table 2 & 3. 

Table 1.  Crystal diffraction data and structure refinement for ErNi1.53(1)Ge2. 

Empirical formula  ErNi1.53(1)Ge2  
Formula weight  402.06  
Temperature  293(2) K  
Diffractometer; Wavelength  STOE-IPDS2 ; 0.71073 Å  
Crystal system  Monoclinic  
Space group  C2/m  
Unit cell dimensions a = 8.0044(16) Å  
 b = 7.9260(16) Å  = 100.67(3)°. 
 c = 21.562(4) Å  
Volume 1344.3(5) Å3  
Z 16  
Absorption coefficient 28.213 mm-1  
F(000) 1536  
Crystal size 40 x 20 x 20 mm3  
Theta range for data collection 2.88 to 34.99°.  
Index ranges -12  h  12, -12  k  12, 0  l  34 
Reflections collected 5797  
Independent reflections 3094 [R(int) = 0.1113]  
Completeness to theta  99.0 %   
Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 3094 / 0 / 102  
Goodness-of-fit on F2 1.093  
Final R indices [I > 2sigma(I)] R1 = 0.0696, wR2 = 0.2316 
R indices (all data) R1 = 0.1137, wR2 = 0.2591 
Extinction coefficient 0.00111(11)  
Largest diff. peak and hole 4.287 and -4.423 e.Å-3 
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Table 2.  Atomic coordinates and equivalent isotropic displacement parameters 
(Å2 103) for ErNi1.53(1)Ge2.  Ueq is defined as one third of the trace of the 
orthogonalized Uij tensor. 

 Wyck. Occup. x y z Ueq 
Er(1) 4i 1 0.1642(2) 0 0.3310(1) 19(1) 
Er(2) 8j 1 0.0841(1) -.2500(1) 0.1683(1) 18(1) 
Er(3) 4i 1 0.1671(2) 1/2 0.3311(1) 19(1) 
Ge(4) 8j 1 -0.2200(3) -.2724(2) 0.0589(1) 17(1) 
Ge(5) 4i 1 0.0505(3) 0 0.0581(1) 16(1) 
Ge(6) 4i 1 0.0088(3) 1/2 0.0582(1) 17(1) 
Ge(7) 4i 1 -0.1406(4) 0 0.2187(1) 16(1) 
Ge(8) 4i 1 0.3534(4) 0 0.2069(2) 20(1) 
Ge(9) 4i 1 -0.1957(4) 0 0.1085(1) 20(1) 
Ge(10) 4i 1 0.4722(4) 0 0.4419(2) 28(1) 
Ni(11) 8j 1 -0.1075(3) 0.2551(3) 0.2859(2) 17(1) 
Ni(12) 8j 1 0.2220(4) 0.2501(3) 0.4419(1) 20(1) 
Ni(13) 4i 1 -0.0284(4) 0 0.4417(2) 20(1) 
Ni(14) 8j 0.57(2) 0.4453(5) 0.2486(5) 0.3902(2) 18(1) 

Table 3.   Anisotropic displacement parameters  (Å2 103) for ErNi1.53(1)Ge2.  The 
anisotropic displacement factor exponent takes the form:  -2 2[ h2 a*2U11 + ...  + 2 h 
k a* b* U12 ] 
 U11 U22 U33 U23 U13 U12 
Er(1) 14(1) 18(1) 25(1) 0 6(1) 0 
Er(2) 17(1) 17(1) 20(1) 0(1) 7(1) 0(1) 
Er(3) 14(1) 18(1) 25(1) 0 6(1) 0 
Ge(4) 18(1) 12(1) 21(1) -3(1) 4(1) 0(1) 
Ge(5) 10(1) 18(1) 21(1) 0 9(1) 0 
Ge(6) 10(1) 19(1) 21(1) 0 2(1) 0 
Ge(7) 17(1) 18(1) 15(1) 0 6(1) 0 
Ge(8) 17(1) 17(1) 28(1) 0 6(1) 0 
Ge(9) 17(1) 21(1) 21(1) 0 6(1) 0 
Ge(10) 18(1) 39(2) 28(2) 0 9(1) 0 
Ni(11) 13(1) 11(1) 28(1) -3(1) 8(1) 0(1) 
Ni(12) 28(1) 14(1) 19(1) 0(1) 6(1) 0(1) 
Ni(13) 9(1) 32(2) 20(1) 0 5(1) 0 
Ni(14) 15(2) 17(2) 24(2) 0(1) 7(1) -1(1) 
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APPENDIX 6.1 

Single Crystal Structure of CeA2Ge2 (A = Au, Ag)

Introduction 

 Single crystal structure refinements of CeA2Ge2 (A = Au, Ag) are reported in 

this section.  . The CeA2Ge2 crystallizes in the CeAl2Ga2-type1 tetragonal structure, 

Pearson code tI10 and Wyckoff sequence eda.  In this section, we report the 

refinement results by single crystal X-ray diffraction experiment.  
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Details of X-ray single crystal diffraction experiment structural data and 

crystallographic data recording/refinement parameters for CeAu2Ge2 and CeAg2Ge2 
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are listed in the Table 1.  The refined site occupancies and fractional coordinates with 

isotropic / anisotropic thermal displacement parameters are listed in Table 2 & 3. 

Table 1.  Crystal diffraction data and structure refinement for CeA2Ge2 (A = Au, Ag). 

Empirical formula  CeAu2Ge1.9(1) CeAg2Ge2 
Formula weight  679.23 501.04 
Temperature  293(2) K 293(2) K 
Wavelength  0.71073 Å 0.71073 Å 
Crystal system  tetragonal tetragonal 
Space group  I4/mmm (no. 139) I4/mmm (no. 139) 
Unit cell dimensions a = 4.3941(6) Å a = 4.2958(6) Å 
 c = 10.455(2) Å c = 10.969(2) Å 
Volume 201.87(6) Å3 202.43(6) Å3 

Z 1 1 
Absorption coefficient 48.971 mm-1 17.478 mm-1 
F(000) 280 216 
Crystal size 30 x 30 x 30 mm3 30 x 30 x 30 mm3 
Theta range for data collection 3.90 to 34.74°. 3.71 to 34.29°. 

Index ranges 
-6  h  6,  
-6  k  6,  
0  l  16 

-6  h  6,  
-6  k  6,  
0  l  17 

Reflections collected 831 839 
Independent reflections 153 [R(int) = 0.1648] 154 [R(int) = 0.0809] 
Completeness to theta  98.7 %  100.00% 
Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 153 / 0 / 10 154 / 0 / 9 
Goodness-of-fit on F2 1.171 1.247 

Final R indices [I > 2sigma(I)] R1 = 0.0743,  
wR2 = 0.1641 

R1 = 0.0296,  
wR2 = 0.0476 

R indices (all data) R1 = 0.0784,  
wR2 = 0.1683 

R1 = 0.0332,  
wR2 = 0.0484 

Extinction coefficient 0.021(6) 0.033(2) 
Largest diff. peak / hole 11.110 / -11.363 e.Å-3 2.160 / -2.963 e.Å-3 
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Table 2.  Atomic coordinates and equivalent isotropic displacement parameters 
(Å2 103) for CeA2Ge2 (A = Au, Ag).  Ueq is defined as one third of the trace of the 
orthogonalized Uij tensor. 

 Wyck. Occupancy x y z Ueq 
Ce 2a 1 0 0 0 15(1) 
Au 4d 1 0 1/2 1/4 18(1) 
Ge 4e 0.95(4) 0 0 0.3834(3) 16(1) 
Ce 2a 1 0 0 0 15(1) 
Ag 4d 1 0 1/2 1/4 18(1) 
Ge 4e 1 0 0 0.3891(1) 16(1) 

 

Table 3.   Anisotropic displacement parameters  (Å2 103) for CeA2Ge2 (A = Au, Ag).  
The anisotropic displacement factor exponent takes the form:  -2 2[ h2 a*2U11 + ...  + 
2 h k a* b* U12 ] 
 U11 U22 U33 U23 U13 U12 

Ce 14(1) 14(1) 25(1) 0 0 0 
Au 20(1) 20(1) 33(1) 0 0 0 
Ge 23(2) 23(2) 22(2) 0 0 0 
Ce 15(1) 15(1) 14(1) 0 0 0 
Ag 18(1) 18(1) 17(1) 0 0 0 
Ge 18(1) 18(1) 13(1) 0 0 0 

 

Reference 
[1] Gignoux, D.; Schmitt, D.; Zerguine, M.; Bauer, E.; Pillmayr, N.; Henry, J. Y.; 
Nguyen, V. N.; Rossat-Mignod, J. J. Magn. Mag. Mater. 1988, 74, 1. 
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APPENDIX 6.2 

Single Crystal Structure of RhZr2

Introduction 

 Single crystal structure refinements of RhZr2 are reported in this section.  The 

RhZr2 crystallizes type in tetragonal Al2Cu-type structure, which was first reported by 

Havinga by powder X-ray diffraction experiment.1  In this section, we report the 

refinement results by single crystal X-ray diffraction experiment. 
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Discussion

Details of X-ray single crystal diffraction experiment structural data and 

crystallographic data recording/refinement parameters for RhZr2 are listed in the 

Table 1.  The refined site occupancies and fractional coordinates with isotropic / 

anisotropic thermal displacement parameters are listed in Table 2 & 3. 

Table 1.  Crystal diffraction data and structure refinement for RhZr2. 

Empirical formula  RhZr2 
Formula weight  142.68 
Temperature  293(2) K 
Wavelength  0.71073 Å 
Crystal system  tetragonal 
Space group  I 4/m c m (no. 140) 
Unit cell dimensions a = 6.4815(9) Å 
 c = 5.5770(11) Å 
Volume 234.29(7) Å3 
Z 4 
Absorption coefficient 7.623 mm-1 
F(000) 250 
Crystal size 35 x 40 x 35 mm3 
Theta range for data collection 4.45 to 29.20°. 
Index ranges -5  h  6, 0  k  8, 0  l  7 
Reflections collected 164 
Independent reflections 100 [R(int) = 0.0102] 
Completeness to theta  100.0 %  
Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 100 / 0 / 8 
Goodness-of-fit on F2 0.911 
Final R indices [I>2sigma(I)] R1 = 0.0114, wR2 = 0.0198 
R indices (all data) R1 = 0.0266, wR2 = 0.0209 
Extinction coefficient 0.0109(6) 
Largest diff. peak and hole 0.838 and -0.500 e.Å-3 

Table 2.  Atomic coordinates and equivalent isotropic displacement parameters 
(Å2 103) for RhZr2.  Ueq is defined as one third of the trace of the orthogonalized Uij 
tensor. 
 

 Wyck. Occupancy x y z Ueq 
Rh 4a 1 0 0 1/4 15(1) 
Zr 8h 1 0.1653(1) 0.6653(1) 0 15(1) 
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Table 3.   Anisotropic displacement parameters  (Å2 103) for RhZr2.  The 
anisotropic displacement factor exponent takes the form:  -2 2[ h2 a*2U11 + ...  + 2 h 
k a* b* U12 ] 
 

 U11 U22 U33 U23 U13 U12 
Rh 16(1) 16(1) 12(1) 0 0 0 
Zr 15(1) 15(1) 14(1) 0 0 1(1) 

 

Reference 

[1] Havinga, E. E.; Damsma, H.; Hokkeling, P. J. Less-Common Metals. 1972, 27, 
169. 
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APPENDIX 6.3 

Single Crystal X-Ray Diffraction Studies on Ternary 

REFe2Zn20 Compounds

(RE = Gd, Tb) 
  
Hyunjin Ko,# Shuag Jia,% Sergey L. Bud’ko,& Olivier Gourdon,$ P. C. Canfield,& and 

Gordon J. Miller#* 
 

# Department of Chemistry, Iowa State University and Ames Laboratory, Ames, Iowa 50011-3111,  
$ Los Alamos National Laboratory, Los Alamos, New Mexico 87545, 
% Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011-3111 
& Department of Physics and Astronomy, Iowa State University and Ames Laboratory, 

Ames, Iowa 50011-3111 

ABSTRACT 

Large single crystals of GdFe2Zn20 and TbFe2Zn20 have been grown in different flux 
concentrations and their crystal structures were analyzed by single crystal X-ray 
diffraction methods.  The face-centered cubic lattices are found to be a = 14.1168(16) 
Å and 14.1232(16) Å for the GdFe2Zn20 system grown in a zinc-rich flux and an iron-
rich flux, respectively.  For the TbFe2Zn20 samples grown in a zinc-rich, Fe-defficient, 
and an Fe-rich flux compounds lattice constants are a = 13.9600(16) Å, 14.1062(16) 
Å, and 14.1019(16) Å.  Chemical compositions were simultaneously examined by 
energy dispersive spectroscopy and compared with the results from the 
crystallographic studies.  Also, the bonding interactions in GdFe2Zn20 and GdCo2Zn20 
structures were studied by first principles calculations using the TB-LMTO method 
within density functional theory. 
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Introduction 

The crystal structure of RET2Zn20 (RE = rare-earth elements, T = transition 

metals) compounds, which has been reported by Jeitschko et al, adopts the face-

centered cubic CeCr2Al20-type structure.1  The structure type could be formed with 

many combinations of elements using rare-earth or early transition metals substituting 

RE elements and using aluminum instead of zinc.2-4      

The initial motivation for this study was driven in search of materials with 

unusual magnetism by colleagues in the Ames Laboratory.  For GdFe2Zn20 and 

TbFe2Zn20, the project was started with the particular interest to elucidate the 

mechanism of remarkably high ferromagnetic transition temperatures.5  During 

multiple synthetic trials to grow crystals best suited for physical property 

measurements, we found anomalous behavior in the transition temperatures 

depending on the flux concentrations in which the crystals were grown.  Thus, 

identifying accurate chemical compositions was critical to correctly establish any 

correlations between chemical composition and the physical properties.  In this paper, 

we report single crystal X-ray refinement results of GdFe2Zn20 crystals grown in two 

different flux concentrations and TbFe2Zn20 crystals grown in three different 

concentrations.  Also, the structural was examined with respect to orbital interactions 

within of GdFe2Zn20 and GdCo2Zn20 by electronic structure calculations. 

 

Experimental 

Synthesis Single crystals of GdFe2Zn20 and TbFe2Zn20 were prepared by 

the flux-growth method using Zn as a flux by mixing the pure elements and heating to 

elevated temperatures.  GdFe2Zn20 crystals were grown in two separate flux 

concentrations: one in a “Zn-rich” flux loaded according to the mole ratio Gd : Fe : Zn 
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of 2 : 4 : 94 (crystal A) and another in a “Fe-rich” flux loaded according to Gd : Fe : 

Zn = 2 : 5 : 93 (crystal B).  Three samples were grown for TbFe2Zn20 single crystals 

with a “standard” flux Tb : Fe : Zn = 2 : 4 : 94 (crystal C), a “Zn-rich” flux 1 : 2 : 97 

(crystal D), and an “Fe-rich” flux 2 : 5 : 93 (crystal E).  Detailed synthetic procedures 

are reported in a separate paper.5

Single Crystal Structure Refinements.    Several single crystals of 

approximately 1.01.01.0 mm dimensions were extracted from both GdFe2Zn20 and 

TbFe2Zn20 samples for X-ray structural determinations. Room-temperature X-ray 

diffraction data were collected on a STOE-IPDS2 (Image Plate Diffraction System) 

single crystal diffractometer with Mo K  radiation ( = 0.71073 Å; 50 kV and 40 mA) 

using a PG(002)-monochromator.  A numerical absorption correction was applied to 

the data using program X-shape (STOE), which corrects symmetry equivalent 

reflections while optimizing a convex polyhedron for the crystal shape. The resulting 

polyhedron from the correction resembled the real crystal form as observed under the 

microscope. According to the large linear absorption of Gd, the consideration of the 

difference in the path lengths of symmetry equivalent reflections resulted in an 

improvement of Rint for all the crystals.  The intensity data sets were used to solve and 

refine the crystal structures with the SHELXTL program suite. Structures were solved 

by direct methods and refined by full-matrix least squares against F2 using all data.6  

Detailed data recording and refinement process conditions are shown in Table 1.  The 

unit cell structure and local coordination environments around each element, as well 

as the electron density map for Tb systems are shown in Figures 1 and 2. 

----------  Figures 1 and 2  ---------- 

----------  Tables 1 and 2  ---------- 
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The distances between the imaging plate and the crystals were set at 100 mm 

for Gd-systems and 60mm for Tb-systems.  Two additional single crystals from all the 

products were isolated to perform corresponding diffraction experiments and yielded 

very good agreement and confirmed the presented results. The total numbers of 

reflections of the data set recorded were A=7887, B=7904, and C=5290, D=5625, 

E=5685. The lattice was determined to have face-centered-cubic symmetry with unit 

cell parameters: a = 14.1168(16) Å and 14.1232(16) Å respectively (Z = 8) for A and 

B Gd-systems; and for Tb-systems: a = 13.9600(16) Å, 14.1062(16) Å, and 

14.1019(16) Å respectively for C, D, and E.  

----------  Tables 3 and 4  ---------- 

The positional parameters and mean square displacements are listed in Tables 

3 and 4.  The 20 parameters including the anisotropic thermal parameters and the site 

occupancies were simultaneously refined for all Zn and Fe atoms while the RE 

occupancy parameter was held constant.  The refined parameters are listed in Tables 5 

and 6. 

----------  Tables 5 and 6  ---------- 

Powder Neutron Diffraction  Time-of-flight (TOF) neutron diffraction 

data were collected at 11 K, 30 K and 295 K for crystal C on the Neutron Powder 

Diffractometer (NPDF) at the Manuel Lujan Neutron Scattering Center of Los 

Alamos National Laboratory. This instrument is a high-resolution powder 

diffractometer located at flight path 1, 32m from the spallation neutron target. The 

data were collected using the 148°, 119°, 90° and 46° banks, which cover a d-spacing 

range from 0.12 to 7.2 Å. 

The structures at 295 K were qualitatively analyzed using the GSAS with a 

Rietveld profile analysis program.7-9 The profile fitting and refinements were 
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performed using simultaneously the four banks (148°, 119°, 90° and 46°) for unit cell 

parameters, atomic positions, and equivalent isotropic displacement parameters as 

well as the background coefficients, scale factors, isotropic strain terms in the profile 

function, and sample absorption.  However, the refinements processes to obtain 

accurate chemical composition were failed to get converged possibly due to the 

presence of the impurity Zn phase diffraction lines overlapping with the main phase 

lines.   

 

Chemical Analysis   One of the main purposes of this investigations 

was to carefully examine the effects of the flux concentrations on the corresponding 

compositions of the flux-grown single crystals.  Therefore, it was imperative for us to 

have independent studies of the chemical compositions other than by means of X-ray 

diffraction analysis.  All single crystal samples were cut in the middle and the cross 

sections were surveyed by the Energy Dispersive Spectroscopy (EDS) using a JEOL 

840A scanning electron microscope, equipped with an IXRF Systems Iridium X-ray 

analyzer with Kevex Quantum thin-window Si(Li) detector for quantitative chemical 

analysis with standardless method and a 20 kV accelerating voltage and a 30 mA 

beam current.  The results showed no significant oxygen content.  For the Gd-systems 

A and B, the EDS analysis surveyed on ca. 10 points indicated that system crystallizes 

with close to fully occupied stoichiometric compositions.  However, the Tb-systems 

showed slightly deviated Fe : Zn contents for each crystal, as shown in Figure 3.   

----------  Figure 3  ---------- 

Electronic Structure Calculation  To understand the electronic properties 

of these systems, electronic structures were calculated for GdFe2Zn20 and GdCo2Zn20 

self-consistently by using the tight-binding linear muffin-tin-orbital (TB-LMTO) 
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method10-13 within the atomic sphere approximation (ASA) using the LMTO Version 

47 program with a local spin density approximation (LSDA)14 to treat exchange and 

correlation.  All relativistic effects except spin-orbit coupling were taken into account 

using a scalar relativistic approximation.15  The radii of the overlapping, space filling 

Wigner-Seitz (WS) atomic spheres were obtained by requiring the overlapping 

potential to be the best possible approximation to the full potential according to an 

automatic procedure.16  The WS radii for the atomic sites determined by this 

procedure are in the ranges 2.146 Å for Gd, 1.506 Å for Fe, 1.550 Å for Co, and 1.655 

- 1.670 Å for Zn.  For GdFe2Zn20 calculations, the unit cell parameter is 0.41 % longer 

than for GdCo2Zn20, thus two additional sites were filled with empty spheres with WS 

radii of 0.815 - 0.865 Å.  The basis set included 4s, 4p and 3d orbitals for transition 

metals, and for the rare-earth Gd atom, the 4f electrons were treated as core electrons, 

therefore only including 6s and 5d in the basis set.  The reciprocal space integrations 

to determine the self-consistent charge density, densities of states (DOS) and crystal 

orbital Hamilton populations (COHP)17 were performed by the tetrahedron method18 

using 301 irreducible k-points on the corresponding Brillouin zones.  

 

Results and Discussions 

Gd-Fe-Zn: Diffraction symmetry and systematic absences confirms the Fm 3 m 

spacegroup as reported by Jeitschko et.al.  However, our studies indicated the possible 

mixing of Fe and Zn atoms in the 16c and 96g sites consistent with the corresponding 

concentrations of the flux that the crystals were grown in.  For specimen (A), our data 

yielded a better refinement with shared site occupancies on the 16c metal sites and for 

specimen (B) further mixing on the 96g site.  Strictly from the single crystal structure 

refinement results yielding the lowest refinement factors, the empirical formula for 
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(A) and (B) crystals, respectively, were determined to be GdFe2.12(2)Zn19.74(4) and 

GdFe5.125(2)Zn18.375(1). 

Tb-Fe-Zn: The initial refinement results with lowest possible refinement factors 

showed similar mixing of the Fe and Zn atoms in the TbFe2Zn20 systems, but to a 

greater degree.  When the crystals were grown in a Zn-rich flux, such as in crystal (D), 

only about 10% of the 16c site is shared with Fe atoms leading to a slightly richer Fe 

content in the unit cell than the 1 : 2 : 20 stoichiometric compound 

(TbFe2.280(6)Zn19.624(2)).  Moreover, in the Fe-rich flux-grown crystal (E), further 

mixing occurs by replacing about 15% of the 16c site as well as a small sharing of 

about 3% into the 96g by Fe atoms, which gives rise to the higher Fe content  of 

TbFe2.640(3)Zn19.378(3).  At this point, it is noticeable that only the 16c sites and 96g sites 

are tolerant for Fe atoms to partially occupy.  However, again, our independent 

composition studies allowed us to accept the structure with no shared occupancies but 

with deficiencies in Zn sites to account for the decreased relative electron density.  

The final refinement results are summarized in Tables 2, 4, and 6. 

----------  Figure 3 and 4  ---------- 

 In Figure 4, the neutron powder diffraction pattern of TbFe2Zn20 with profile 

indexing lines are shown.  We found the existence of a trace amount of elemental Zn 

in the powder pattern as noted in the shaded areas.  

Fe atoms in the 16d sites occupy the center of one icosahedron coordinated by 

12 Zn/Fe atoms in 96g and 48f sites, and the Zn atoms in 16c sites occupy the 

neighboring center of icosahedra also coordinated by Zn/Fe atoms.  Alternating Fe-

centered and Zn-centered icosahedra makes the fundamental tetrahedral building 

block of the lattice structure, sharing vertices with each other and giving rise to the 

network of icosahedra.  The rare-earth metals in the structure are surrounded by 16 
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transition metals making a Frank-Kasper polyhedron.   

Throughout the refinement processes on all crystals (A) – (E), similar 

problems occurred on refining the thermal displacement parameters of the 16c Zn1 

sites and 16d Fe sites as shown in Tables 3 and 4.  The observed thermal displacement 

parameters on Zn1 site were much larger than the other Zn sites.  The Zn2 and Zn3 

sites are both coordinating tightly around the Fe atoms at ca. 2.5 - 2.7 Å; on the other 

hand, the Zn1 atoms are only bound to the rare-earth metals at 3.056 Å, which results 

in the enlarged thermal displacement parameters.  Also, the dense icosahedral 

coordination around Fe atoms gives rise to a shrinkage in their thermal displacement 

parameters. 

Ideally, transition metal 3d orbitals are degenerate as 5 equivalent hg orbitals 

in a regular icosahedra field.  Considering that the system is rich in Zn atoms and the 

Fe and rare-earth metals are only dilutively populated in the structure without any 

direct Fe-Fe interactions, the Fe atom would have two unpaired electrons resulting in 

a local magnetic moment close to its atomic local moment.  Any significant increase 

or decrease in the local magnetic moment would suggest the possible existence of Fe-

Fe interactions between Fe atoms at the center of the icosahedron and any Fe atoms 

composing the icosahedron, as well as a resulting decrease of the point symmetry.  

Assuming no mixed occupancies of Zn sites, the rare-earth metals are positioned in 

the center of the Frank-Kasper polyhedron coordinated by 16 Zn atoms.  

In Figure 5, DOS and –COHP curves are drawn for GdFe2Zn20 (left) and 

GdCo2Zn20 (right).  Zn 3d states are filled and well below the Fermi level for both 

systems.  But going from Fe to Co does change the DOS curves: for instance, the Co 

3d states in GdCo2Zn20 are split and widen showing two degenerate state profiles.  In 

GdFe2Zn20, on the other hand, the Fe 3d states are narrowly concentrated around –2.5 
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eV.  The Fermi energy of GdFe2Zn20 is closer to the Fe 3d states.  From the COHP 

analysis, two sets of significant interactions were found between Fe-Zn, Co-Zn, and 

Zn-Zn contacts.  In the Fe-system, Zn-Zn interactions are nearly optimized only 

filling bonding states, whereas Fe-Zn interactions are not optimized by filling part of 

their antibonding states.  The same is observed for the Zn-Zn bonding optimization in 

the Co-system, but the Co-Zn interaction is nearly optimized.  This possibility of 

shifting the bond orders without destabilizing too much in terms of total energy could 

explain the ease in the structure formation for the variety of compounds in this type of 

crystal structure. 
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Table 1.  X-ray single crystal diffraction experiment structural data and 
crystallographic data recording/refinement conditions for GdFe2Zn20 

 
Crystal A B 

Refined composition  GdFe2Zn20 GdFe2Zn20 

Space Group Fm 3 m Fm 3 m 

Z 8 8 

Unit cell dimensions (Å) a = 14.1168(16) a =14.1232(16)   

F(000) 2864 5732 

Angular range 2   2.50 to 29.22° 2.50 to 29.20° 

-19  h  19 -19  h  16 

-19  k  18 -19  k  19 

hkl ranges 

-19  l  17 -19  l  19 

Total reflection recorded 7887 7904 

Rint 0.0793 0.1009 

Absorption coefficient 
(mm-1) 

19.974 39.872 

Refinement method Full-matrix least-squares 
on F2 

Full-matrix least-squares 
on F2 

Observed reflections  
(I > 2 (I)) 

217 217 

Completeness to max 2  
(%, º ) 

99.5 / 29.22 99.5 / 29.20 

Restraints 0 0 

No. of refined parameters 17 17 

GOodness-Of-Fit on F2 1.445 1.456 

R1 = 0.0268 R1 = 0.0322 Final R indices  
(I > 2 (I)) wR2 = 0.0554 wR2 = 0.0790 

R1 = 0.0272 R1 = 0.0322 R indices (all data) 

wR2 = 0.0555 wR2 = 0.0790 

Extinction coefficient 0.00132(8) 0.00062(6) 

Residual electron density  
(Å-3, peak / hole)  

1.814 / -0.928 0.991 / -1.257 
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Table 2.  X-ray single crystal diffraction experiment structural data and 
crystallographic data recording/refinement conditions for TbFe2Zn20 single crystals C, 
D, & E. 
 
Crystal C D E 

refined composition  TbFe2Zn19.1(4) TbFe2Zn19.2(4) TbFe2Zn20 

Space Group Fm 3 m Fm 3 m Fm 3 m 

Z 8 8 8 

Unit cell dimensions (Å) a = 13.9600(16) a =14.1062(16) a = 14.1019(16) 

F(000) 2868 2868 2868 

Angular range,   2.53 to 20.06° 4.09 to 34.56° 4.09 to 35.07° 

-16  h  19 -22  h  22 -22  h  22 

-19  k  18 -22  k  22 -22  k  22 

hkl ranges 

-19  l  18 0  l  22 0  l  22 

Total reflection recorded 5290 5625 5685 

Rint 0.2859 0.1314 0.0991 

Absorption coefficient 
(mm-1) 

20.816 20.176 20.194 

Refinement method Full-matrix least-
squares on F2 

Full-matrix least-
squares on F2 

Full-matrix least-
squares on F2 

Observed reflections  
(I > 2 (I)) 

211 326 332 

Completeness to max 2  
(%, º ) 

100 / 29.06 99.7 / 34.73 98.5 / 35.07 

Restraints 0 0 0 

No. of refined 
parameters 

20 20 17 

GOodness-Of-Fit on F2 1.626 1.314 1.566 

R1 = 0.0512 R1 = 0.0636 R1 = 0.0514 Final R indices  
(I > 2 (I)) wR2 = 0.1260 wR2 = 0.1355 wR2 = 0.1327 

R1 = 0.0538 R1 = 0.0679 R1 = 0.0674 R indices (all data) 

wR2 = 0.1268 wR2 = 0.1371 wR2 = 0.1745 

Extinction coefficient 0.00058(9) 0.00081(10) 0.00100(18) 
Residual electron 
density  
(Å-3, peak / hole)  

1.168 / -1.262 3.281 / -3.972 3.373 / -4.062 
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Table 3.  X-ray single crystal diffraction experiment refined site occupancies and 
fractional coordinates with isotropic thermal displacement parameters for Zn-rich flux 
grown crystal A and Fe-rich flux grown single crystal B GdFe2Zn20. 

Atom Wyck. Occ. x y z Uiso. 
crystal A       

Gd 8a 1 1/8 1/8 1/8 0.006(1) 
Zn1 16c 1 0 0 0 0.021(1) 
Zn3 48f 1 1/8 1/8 0.4893(1) 0.010(1) 
Zn2 96g 1 0.0587(1) 0.0587(1) 0.3266(1) 0.014(1) 
Fe 16d 1 1/2 1/2 1/2 0.006(1) 

crystal B       
Gd 8a 1 1/8 1/8 1/8 0.005(1) 
Zn1 16c 1 0 0 0 0.020(1) 
Zn2 48f 1 1/8 1/8 0.4893(1) 0.009(1) 
Zn3 96g 1 0.0587(1) 0.0587(1) 0.3266(1) 0.014(1) 
Fe 16d 1 1/2 1/2 1/2 0.005(1) 

 
 
Table 4.  X-ray single crystal diffraction experiment refined site occupancies and 
fractional coordinates with isotropic thermal displacement parameters for TbFe2Zn20 
single crystals C, D, and E. 

atom Wyck. Occ. x y z Uiso. 
crystal C       
Tb 8a 1 1/8 1/8 1/8 0.004(1) 
Zn1 16c 0.95(3) 0 0 0 0.015(2) 
Zn2 96g 0.96(2) 1/8 1/8 0.4891(2) 0.05(1) 
Zn3 48f 0.94(1) 0.0589(1) 0.0589(1) 0.3262(1) 0.009(1) 
Fe 16d 1 1/2 1/2 1/2 0.004(1) 
crystal D       
Tb 8a 1 1/8 1/8 1/8 0.008(1) 
Zn1 16c 0.92(3) 0 0 0 0.018(2) 
Zn2 96g 0.97(2) 1/8 1/8 0.4891(2) 0.010(1) 
Zn3 48f 0.97(2) 0.0589(1) 0.0589(1) 0.3262(1) 0.015(1) 
Fe 16d 1 1/2 1/2 1/2 0.007(1) 
crystal E 
Tb 8a 1 1/8 1/8 1/8 0.009(1) 
Zn1 16c 1 0 0 0 0.022(1) 
Zn2 96g 1 1/8 1/8 0.4893(1) 0.013(1) 
Zn3 48f 1 0.0589(1) 0.0589(1) 0.3263(1) 0.017(1) 
Fe 16d 1 1/2 1/2 1/2 0.008(1) 
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Table 5.  X-ray single crystal diffraction experiment refinement anisotropic 

displacement parameters for GdFe2Zn20 crystals A and B. 

Atom U11 U22 U33 U12 U13 U23 
crystal A       
Gd 0.006(1) 0.006(1) 0.006(1) 0 0 0 
Zn1 0.021(1) 0.021(1) 0.021(1) -0.005(1) -0.005(1) -0.005(1) 
Zn2 0.010(1) 0.010(1) 0.010(1) -0.003(1) 0 0 
Zn3 0.016(1) 0.016(1) 0.011(1) -0.005(1) -0.001(1) -0.001(1) 
Fe4 0.006(1) 0.006(1) 0.006(1) 0.000(1) 0.000(1) 0.000(1) 
crystal B       
Gd 0.005(1) 0.005(1) 0.005(1) 0 0 0 
Zn1 0.020(1) 0.020(1) 0.020(1) -0.005(1) -0.005(1) -0.005(1) 
Zn2 0.009(1) 0.009(1) 0.009(1) -0.003(1) 0 0 
Zn3 0.015(1) 0.015(1) 0.010(1) -0.005(1) -0.001(1) -0.001(1) 
Fe4 0.005(1) 0.005(1) 0.005(1) 0.000(1) 0.000(1) 0.000(1) 

 

Table 6.  X-ray single crystal diffraction experiment refinement anisotropic 

displacement parameters for TbFe2Zn20 single crystals C, D, and E. 

U11 U22 U33 U12 U13 U23 
crystal C       
Tb 0.004(1) 0.004(1) 0.004(1) 0 0 0 
Zn1 0.015(2) 0.015(2) 0.015(2) -0.005(1) -0.005(1) -0.005(1) 
Zn2 0.006(1) 0.006(1) 0.005(1) -0.003(1) 0 0 
Zn3 0.011(1) 0.011(1) 0.006(1) -0.005(1) -0.001(1) -0.001(1) 
Fe 0.004(1) 0.004(1) 0.004(1) 0.000(1) 0.000(1) 0.000(1) 
crystal D       
Tb 0.008(1) 0.008(1) 0.008(1) 0 0 0 
Zn1 0.018(2) 0.018(2) 0.018(2) -0.006(1) -0.006(1) -0.006(1) 
Zn2 0.010(1) 0.010(1) 0.011(1) -0.003(1) 0 0 
Zn3 0.017(1) 0.017(1) 0.011(1) -0.005(1) -0.001(1) -0.001(1) 
Fe 0.007(1) 0.007(1) 0.007(1) -0.001(1) -0.001(1) -0.001(1) 
crystal E       
Tb 0.009(1) 0.009(1) 0.009(1) 0 0 0 
Zn1 0.022(1) 0.022(1) 0.022(1) -0.005(1) -0.005(1) -0.005(1) 
Zn2 0.013(1) 0.013(1) 0.013(1) -0.003(1) 0 0 
Zn3 0.018(1) 0.018(1) 0.013(1) -0.005(1) 0.000(1) 0.000(1) 
Fe 0.008(1) 0.008(1) 0.008(1) -0.001(1) -0.001(1) -0.001(1) 
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